首页> 外文期刊>Expert Systems with Application >Optimizing Model Predictive Control horizons using Genetic Algorithm for Motion Cueing Algorithm
【24h】

Optimizing Model Predictive Control horizons using Genetic Algorithm for Motion Cueing Algorithm

机译:基于遗传算法的运动提示算法优化模型预测控制视野

获取原文
获取原文并翻译 | 示例

摘要

Driving simulators are effective tools for producing the feeling of driving a real car through generation of a similar environment and motion cues. The main problem of motion simulators is their limited workspace which does not allow them to produce the exact motions of a real vehicle, hence they need a Motion Cueing Algorithm (MCA). A high-fidelity motion simulator can be used for vehicle prototyping and testing as well as driver/pilot training to enhance transportation safety. Using motion simulators with the capability of replacing realistic motions for these purposes is less risky for drivers and more time and cost-effective. Due to workspace limitations, washout filters have been designed to bring motion simulators back to a neutral position; however, the problem of violation of platform constraints is still an issue. Recently Model Predictive Control (MPC) has become popular in driving simulators. The primary advantage of this control method is respecting constraints and consideration of future dynamics. The horizon windows of future control and prediction affect the computational burden and the output performance. As these horizons are chosen manually by the designer, they are sub-optimal and in some cases too wide or narrow. In this paper, a novel method based on Genetic Algorithm (GA) is employed to achieve the best control and prediction horizons considering minimization of several terms such as sensation error, displacement and the computational burden. This new method is proposed to eliminate the MPC-MCA drawbacks such as time-consuming empirical guessing by iterative trial-and-error for the initial control and prediction horizons as selecting the initial control and prediction horizons based on trial-and-error can lead to large sensation error, low motion fidelity, inefficient platform usage as well as the computational burden. Therefore, this method provides a new framework for tuning not only the MPC-MCA optimally but also all the MPC-based applications while minimizing the desired cost function and computational load. The simulation results show the effectiveness of the proposed method in terms of output performance improvement and the computational burden. (C) 2017 Elsevier Ltd. All rights reserved.
机译:驾驶模拟器是有效的工具,可通过产生类似的环境和运动提示来产生驾驶真实汽车的感觉。运动模拟器的主要问题是其有限的工作空间,这使其无法产生真实车辆的精确运动,因此它们需要运动提示算法(MCA)。高保真运动模拟器可用于车辆原型设计和测试以及驾驶员/驾驶员培训,以提高运输安全性。为此,使用具有可替代现实动作功能的运动模拟器对驾驶员而言风险较小,并且节省了时间和成本。由于工作空间的限制,冲洗过滤器的设计可使运动模拟器回到中间位置。但是,违反平台约束的问题仍然是一个问题。最近,模型预测控制(MPC)在驾驶模拟器中变得很流行。这种控制方法的主要优点是遵守约束条件并考虑未来动态。未来控制和预测的视域窗口会影响计算负担和输出性能。由于这些视野是由设计人员手动选择的,因此它们不是最佳的,在某些情况下过宽或过窄。在本文中,基于遗传算法(GA)的一种新方法被用来实现最佳的控制和预测范围,同时考虑到了诸如误差,位移和计算量之类的多个术语的最小化。提出了这种新方法,以消除MPC-MCA的缺点,例如对于初始控制和预测范围,通过反复的反复试验来耗时的经验猜测,因为基于试验和错误来选择初始控制和预测范围可以导致造成较大的感觉误差,运动保真度低,平台使用效率低以及计算负担大。因此,此方法提供了一个新的框架,该框架不仅可以优化MPC-MCA,而且可以优化所有基于MPC的应用程序,同时最大程度地降低所需的成本函数和计算负荷。仿真结果表明了该方法在输出性能改善和计算负担方面的有效性。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号