首页> 外文期刊>Expert Systems with Application >Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition
【24h】

Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition

机译:犹豫模糊集之间的灰色关联分析及其在模式识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Hesitant Fuzzy Sets (HFSs) is an important tool to deal with uncertain and vague information. There have been lots of fuzzy measures for it from different views. However, these fuzzy measures are more or less inappropriate in the applications. The distance and similarity measures only consider the closeness of the HFSs, while the correlation coefficients only consider the linear fashion. They are merely one side of the HFSs intrinsic fuzzy measures. Therefore, in this paper, we apply the grey relational analysis to the HFSs for the first time and define the HFSs grey relational degree to express the closeness. Furthermore, we creatively propose the difference and slope concept of the HFSs. Based on the difference and slope we define the HFSs slope grey relational degree to represent the linear fashion. Sequentially, combining the HFSs grey relational degree and HFSs slope grey relational degree together, we construct the HFSs synthetic grey relational degree, which takes both the closeness and the linear fashion into consideration. With the help of the proposed HFSs synthetic grey relational degree we propose the hesitant fuzzy grey relational recognition methodology. Finally, we apply the HFSs synthetic grey relational degree to deal with the pattern recognition problems. Compared with some examples, the performance of the proposed HFSs synthetic grey relational degree outperforms the existing HFSs fuzzy measures in the accuracy and integrity. (C) 2017 Elsevier Ltd. All rights reserved.
机译:犹豫模糊集(HFS)是处理不确定和模糊信息的重要工具。从不同的角度来看,有很多模糊的度量方法。但是,这些模糊度量在应用中或多或少是不合适的。距离和相似性度量仅考虑HFS的接近度,而相关系数仅考虑线性方式。它们只是HFS内在模糊测度的一方面。因此,本文首次将灰色关联度分析应用于HFS,并定义HFS的灰色关联度来表示紧密度。此外,我们创造性地提出了HFS的差异和斜率概念。基于差异和斜率,我们定义了HFS斜率的灰色关联度来表示线性方式。将HFSs的灰色关联度和HFSs的斜率灰色关联度相结合,构造了HFSs的合成灰色关联度,同时考虑了紧密度和线性方式。借助提出的HFS综合灰色关联度,我们提出了犹豫的模糊灰色关联识别方法。最后,我们将HFS的综合灰色关联度应用于模式识别问题。与一些例子相比,所提出的HFSs综合灰色关联度的性能在准确性和完整性方面优于现有的HFSs模糊度量。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号