首页> 外文期刊>Expert Systems with Application >Unconstrained face identification using maximum likelihood of distances between deep off-the-shelf features
【24h】

Unconstrained face identification using maximum likelihood of distances between deep off-the-shelf features

机译:利用最大的现成特征之间距离的最大可能性进行无约束的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

The paper deals with unconstrained face recognition task for the small sample size problem based on computation of distances between high-dimensional off-the-shelf features extracted by deep convolution neural network. We present the novel statistical recognition method, which maximizes the likelihood (joint probabilistic density) of the distances to all reference images from the gallery set. This likelihood is estimated with the known asymptotically normal distribution of the Kullback-Leibler discrimination between nonnegative features. Our approach penalizes the individuals if their feature vectors do not behave like the features of observed image in the space of dissimilarities of the gallery images. We provide the experimental study with the LFW (Labeled Faces in the Wild), YTF (YouTube Faces) and IJB-A (IARPA Janus Benchmark A) datasets and the state-of-the-art deep learning-based feature extractors (VGG-Face, VGGFace2, ResFace-101, CenterFace and Light CNN). It is demonstrated, that the proposed approach can be applied with traditional distances in order to increase accuracy in 0.3-5.5% when compared to known methods, especially if the training and testing images are significantly different. (C) 2018 Elsevier Ltd. All rights reserved.
机译:本文基于深度卷积神经网络提取的高维现成特征之间的距离,计算了小样本问题的无约束人脸识别任务。我们提出了一种新颖的统计识别方法,该方法最大程度地提高了从画廊集中到所有参考图像的距离的可能性(联合概率密度)。这种可能性是通过非负特征之间的Kullback-Leibler判别的已知渐近正态分布来估计的。如果他们的特征向量在画廊图像的相异空间内表现得不像观察到的图像的特征,那么我们的方法就会对他们进行惩罚。我们为实验研究提供了LFW(野生标签面孔),YTF(YouTube面孔)和IJB-A(IARPA Janus Benchmark A)数据集以及基于深度学习的最新技术特征提取器(VGG-人脸,VGGFace2,ResFace-101,CenterFace和Light CNN)。结果表明,与已知方法相比,所提出的方法可以在传统距离上应用,以将精度提高0.3-5.5%,尤其是在训练和测试图像明显不同的情况下。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号