首页> 外文期刊>Expert Systems with Application >Optimizing outpatient appointment system using machine learning algorithms and scheduling rules: A prescriptive analytics framework
【24h】

Optimizing outpatient appointment system using machine learning algorithms and scheduling rules: A prescriptive analytics framework

机译:使用机器学习算法和调度规则优化门诊预约系统:一种规范性分析框架

获取原文
获取原文并翻译 | 示例

摘要

In the US, the demand for outpatient services is expected to increase, while the supply of physicians to provide the care is projected to decrease. Besides, inefficiencies in the appointment system (AS) and patient no-shows (patients who do not arrive for scheduled appointments) reduce provider productivity, timely access to care, and cost the U.S. healthcare system more than $150 billion a year. To handle increasing demand and compensate for patient no-shows, outpatient clinics tend to overbook appointments. The current scheduling practice at most clinics and majority of the scheduling rules proposed in the literature assume all patients are equally likely to miss an appointment. Further, most scheduling rules in the literature do not make use of the available data, such as electronic health records, when scheduling patients. This paper proposes a prescriptive analytics framework to improve the performance of an AS with respect to patient satisfaction (measured using average patient waiting time and number of patients unable to get an appointment for the day under consideration) and resource utilization (measured using average resource idle time, overflow time and overtime). In the proposed framework, patient-related data from various sources are used to develop predictive models that identify the risk of a patient no-show. Different scheduling rules, that leverage the patient-specific no-show risk is then proposed. A case study, with real data from a Family Medicine Clinic in Pennsylvania, is used to show the feasibility of the proposed framework. The effectiveness of the proposed scheduling rules is evaluated by benchmarking it with three rules adapted from the literature. The results indicate that the proposed scheduling rules consistently outperform the benchmark rules for all the clinic settings tested. Further, the proposed framework is generic and can be adopted by any outpatient clinic characterized by occurrences of no-shows and appointment-based customer arrivals. (C) 2018 Elsevier Ltd. All rights reserved.
机译:在美国,门诊服务的需求预计会增加,而提供护理的医生人数预计会减少。此外,预约系统(AS)的效率低下和患者缺诊(未按计划赴约的患者)降低了医疗服务提供者的生产力,无法及时获得护理,并使美国医疗系统每年花费超过1500亿美元。为了满足不断增长的需求并弥补患者的缺席,门诊诊所倾向于超额预约。大多数诊所的当前调度实践以及文献中提出的大多数调度规则都假定所有患者同样有可能错过预约。此外,文献中的大多数调度规则在调度患者时都没有利用可用数据,例如电子健康记录。本文提出了一种规范性分析框架,以提高AS在患者满意度(使用平均患者等待时间和所考虑的当天无法预约的患者数量)和资源利用率(使用平均资源空闲状态进行衡量)方面的性能时间,溢出时间和加班时间)。在提出的框架中,来自各种来源的与患者相关的数据被用于开发预测模型,以识别出患者未出现的风险。然后提出了利用患者特定的不出现风险的不同调度规则。结合来自宾夕法尼亚州家庭医学诊所的真实数据进行的案例研究显示了该框架的可行性。通过使用从文献改编的三个规则对其进行基准测试,可以评估所提出的调度规则的有效性。结果表明,对于所有测试的诊所设置,建议的调度规则始终优于基准规则。此外,所提出的框架是通用的,并且可以被特征在于不出现和基于约会的客户到达的任何门诊诊所采用。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号