首页> 外文期刊>Expert Systems with Application >Neural network modeling for a two-stage production process with versatile variables: Predictive analysis for above-average performance
【24h】

Neural network modeling for a two-stage production process with versatile variables: Predictive analysis for above-average performance

机译:具有通用变量的两阶段生产过程的神经网络建模:超出平均水平的预测分析

获取原文
获取原文并翻译 | 示例

摘要

With growing academic interest and pragmatic need, adaptive two-stage production modeling becomes an emergent research topic for decision sciences and production management. Although prior research has addressed sequential production process, the primary focus was limited to efficiency analysis with a narrow scope of applications. Data envelopment analysis (DEA) has been commonly used for earlier studies; however, its lack of learning and deficiency in predictive capability seriously diminish the practical utility of DEA and call for an intelligent information-processing technique for further advancement. This paper uniquely presents an output-focused backpropagation neural network (BPNN) approach with capabilities to capture patterns of high performers, a significant departure from conventional efficiency driven DEA analysis, as well as a promising analytic paradigm. In so doing, the proposed standalone BPNN can predict above-average performance and supports managerial decision-making in setting progressive performance targets in consecutive stages. The sound empirical application to the two-stage bank production process proves the effectiveness of the proposed analytic paradigm. In brief, the intelligent learning model advances existing two-stage production modeling with a methodological breakthrough and makes significant contributions to the existing literature. Published by Elsevier Ltd.
机译:随着学术兴趣和实用需求的增长,自适应两阶段生产建模已成为决策科学和生产管理的新兴研究主题。尽管先前的研究已经针对顺序生产过程进行了研究,但主要关注点仅限于效率分析以及狭窄的应用范围。数据包络分析(DEA)已广泛用于较早的研究。但是,由于缺乏学习和预测能力不足,严重削弱了DEA的实用性,因此需要一种智能的信息处理技术来进一步发展。本文独特地提出了一种以输出为重点的反向传播神经网络(BPNN)方法,该方法具有捕获高性能模式的能力,与传统的效率驱动DEA分析有显着差异,并且是一种很有前途的分析范例。这样,提出的独立BPNN可以预测高于平均水平的绩效,并支持管理层在连续阶段设定进步绩效目标时进行决策。合理的经验应用于两阶段银行生产过程证明了所提出的分析范式的有效性。简而言之,智能学习模型以方法论上的突破推动了现有的两阶段生产模型的发展,并为现有文献做出了重大贡献。由Elsevier Ltd.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号