首页> 外文期刊>Evolutionary computation >Using Coverage as a Model Building Constraint in Learning Classifier Systems
【24h】

Using Coverage as a Model Building Constraint in Learning Classifier Systems

机译:使用覆盖率作为学习分类器系统中的模型构建约束

获取原文
获取原文并翻译 | 示例

摘要

Promoting and maintaining diversity is a critical requirement of search in learning classifier systems (LCSs). What is required of the genetic algorithm (GA) in an LCS context is not convergence to a single global maximum, as in the standard optimization framework, but instead the generation of individuals (i.e., rules) that collectively cover the overall problem space. COGIN (COverage-based Genetic INduction) is a system designed to exploit genetic recombination for the purpose of constructing rule-based classification models from examples. The distinguishing characteristic of COGIN is its use of coverage of training set examples as an explicit constraint on the search, which acts to promote appropriate diversity in the population of rules over time. By treating training examples as limited resources, COGIN creates an ecological model that simultaneously accommodates a dynamic range of niches while encouraging superior individuals within a niche, leading to concise and accurate decision models. Previous experimental studies with COGIN have demonstrated its performance advantages over several well-known symbolic induction approaches. In this paper, we examine the effects of two modifications to the original system configuration, each designed to inject additional diversity into the search: increasing the carrying capacity of training set examples (i.e., increasing coverage redundancy) and increasing the level of disruption in the recombination operator used to generate new rules. Experimental results are given that show both types of modifications to yield substantial improvements to previously published results.
机译:促进和维护多样性是学习分类器系统(LCS)中搜索的关键要求。在LCS上下文中,遗传算法(GA)所需要的不是像标准优化框架中那样收敛到单个全局最大值,而是生成可集体覆盖整个问题空间的个人(即规则)。 COGIN(基于覆盖率的遗传归纳)是一个系统,旨在利用遗传重组来构建基于示例的基于规则的分类模型。 COGIN的显着特征是它使用训练集示例的覆盖范围作为对搜索的显式约束,该行为可随着时间的推移促进规则总体的适当多样性。通过将培训示例视为有限的资源,COGIN创建了一个生态模型,该模型可以同时适应动态范围的利基市场,同时鼓励利基市场中的优秀人才,从而形成简洁准确的决策模型。以前使用COGIN进行的实验研究已经证明,它比几种众所周知的符号归纳方法具有优越的性能。在本文中,我们研究了对原始系统配置进行的两次修改的效果,每种修改的目的都是为了在搜索中注入更多的多样性:增加训练样本集的承载能力(即,增加覆盖范围的冗余度)和增加对样本集的破坏程度。重组运算符,用于生成新规则。给出的实验结果表明,两种修改类型都可以对以前发表的结果进行实质性的改进。

著录项

  • 来源
    《Evolutionary computation》 |1994年第1期|67-91|共25页
  • 作者

    Greene D; Smith S;

  • 作者单位

    The Robotics Institute School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 dglv@andrew.cmu.edu;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号