首页> 外文期刊>Evolutionary computation >Implicit Niching in a Learning Classifier System: Nature's Way
【24h】

Implicit Niching in a Learning Classifier System: Nature's Way

机译:学习分类器系统中的隐式小生境:自然的方式

获取原文
获取原文并翻译 | 示例

摘要

We approach the difficult task of analyzing the complex behavior of even the simplest learning classifier system (LCS) by isolating one crucial subfunction in the LCS learning algorithm: covering through niching. The LCS must maintain a population of diverse rules that together solve a problem (e.g., classify examples). To maintain a diverse population while applying the GAs selection operator, the LCS must incorporate some kind of niching mechanism. The natural way to accomplish niching in an LCS is to force competing rules to share resources (i.e., rewards). This implicit LCS fitness sharing is similar to the explicit fitness sharing used in many niched GAs. Indeed, the LCS implicit sharing algorithm can be mapped onto explicit fitness sharing with a one-to-one correspondence between algorithm components. This mapping is important because several studies of explicit fitness sharing, and of niching in GAs generally, have produced key insights and analytical tools for understanding the interaction of the niching and selection forces. We can now bring those results to bear in understanding the fundamental type of cooperation (a.k.a. weak cooperation) that an LCS must promote.
机译:我们通过隔离LCS学习算法中的一个关键子功能来解决即使是最简单的学习分类器系统(LCS)的复杂行为的艰巨任务:通过适当的覆盖。 LCS必须维护各种规则,这些规则可以共同解决问题(例如,对示例进行分类)。为了在应用GA选择运算符的同时保持多样化的人群,LCS必须结合某种适当的机制。在LCS中完成适当设置的自然方法是强制竞争规则共享资源(即奖励)。这种隐式的LCS适应度共享类似于许多特定GA中使用的显式适应度共享。实际上,LCS隐式共享算法可以映射到显式适应度共享,并且算法组件之间具有一一对应的关系。这种映射很重要,因为对显式适应度共享和GA中一般小生境的若干研究已经产生了重要的见解和分析工具,可用于理解小生境和选择力的相互作用。现在,我们可以利用这些结果来了解LCS必须促进的基本合作类型(又称弱合作)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号