首页> 外文期刊>Evolutionary computation >Evaluating the ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions
【24h】

Evaluating the ε-Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions

机译:评估基于ε控制的多目标进化算法以快速计算帕累托最优解

获取原文
获取原文并翻译 | 示例

摘要

Since the suggestion of a computing procedure of multiple Pareto-optimal solutions in multi-objective optimization problems in the early Nineties, researchers have been on the look out for a procedure which is computationally fast and simultaneously capable of finding a well-converged and well-distributed set of solutions. Most multi-objective evolutionary algorithms (MOEAs) developed in the past decade are either good for achieving a well-distributed solutions at the expense of a large computational effort or computationally fast at the expense of achieving a not-so-good distribution of solutions. For example, although the Strength Pareto Evolutionary Algorithm or SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational time needed to run SPEA is much greater. In this paper, we evaluate a recently-proposed steady-state MOEA (Deb et al., 2003) which was developed based on the ?-dominance concept introduced earlier(Laumanns et al., 2002) and using efficient parent and archive update strategies for achieving a well-distributed and well-converged set of solutions quickly. Based on an extensive comparative study with four other state-of-the-art MOEAs on a number of two, three, and four objective test problems, it is observed that the steady-state MOEA is a good compromise in terms of convergence near to the Pareto-optimal front, diversity of solutions, and computational time. Moreover, the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allowing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal solutions.
机译:自从九十年代初期在多目标优化问题中提出了多个Pareto最优解的计算程序的建议以来,研究人员一直在寻找一种程序,该程序计算速度快,并且能够同时找到一个收敛性和良好性的程序。分布式解决方案集。过去十年中开发的大多数多目标进化算法(MOEA)要么以花费大量的计算工作为代价来实现分布良好的解决方案,要么以实现解决方案分布不那么好为代价来快速进行计算。例如,虽然强度帕累托进化算法或SPEA(Zitzler和Thiele,1999)与精英非支配排序GA或NSGA-II(Deb等,2002a)相比产生了更好的分布,但计算时间需要运行SPEA更大。在本文中,我们评估了最近提出的稳态MOEA(Deb等,2003),该模型是基于较早引入的α-主导概念(Laumanns等,2002)并使用有效的父级和归档更新而开发的快速实现分布式解决方案和融合解决方案的策略。基于对其他两个,三个和四个客观测试问题与其他四个最先进的MOEA进行的广泛比较研究,可以观察到,稳态MOEA在收敛到接近帕累托最优前沿,解的多样性和计算时间。此外,ε-MOEA向使MOEA实用化迈进了一步,特别是允许决策者控制所获得的Pareto最优解中可达到的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号