首页> 外文期刊>Evolutionary computation >Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks
【24h】

Globally Multimodal Problem Optimization Via an Estimation of Distribution Algorithm Based on Unsupervised Learning of Bayesian Networks

机译:基于贝叶斯网络无监督学习的分布算法估计全局多模态问题

获取原文
获取原文并翻译 | 示例

摘要

Many optimization problems are what can be called globally multimodal, i.e., they present several global optima. Unfortunately, this is a major source of difficulties for most estimation of distribution algorithms, making their effectiveness and efficiency degrade, due to genetic drift. With the aim of overcoming these drawbacks for discrete globally multimodal problem optimization, this paper introduces and evaluates a new estimation of distribution algorithm based on unsupervised learning of Bayesian networks. We report the satisfactory results of our experiments with symmetrical binary optimization problems.
机译:许多优化问题就是所谓的全局多峰问题,即,它们代表了几个全局最优问题。不幸的是,这是大多数估计分配算法困难的主要原因,由于遗传漂移,使得其有效性和效率下降。为了克服离散全局多峰问题优化的这些缺点,本文介绍并评估了一种基于贝叶斯网络无监督学习的分布算法的新估计。我们报告对称二进制优化问题的实验令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号