首页> 外文期刊>Evolutionary computation >Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms
【24h】

Self-Adaptation of Mutation Operator and Probability for Permutation Representations in Genetic Algorithms

机译:遗传算法中变异算子的自适应和排列表示的概率

获取原文
获取原文并翻译 | 示例

摘要

The choice of mutation rate is a vital factor in the success of any genetic algorithm (GA), and for permutation representations this is compounded by the availability of several alternative mutation operators. It is now well understood that there is no one "optimal choice"; rather, the situation changes per problem instance and during evolution. This paper examines whether this choice can be left to the processes of evolution via self-adaptation, thus removing this nontrivial task from the G A user and reducing the risk of poor performance arising from (inadvertent) inappropriate decisions. Self-adaptation has been proven successful for mutation step sizes in the continuous domain, and for the probability of applying bitwise mutation to binary encodings; here we examine whether this can translate to the choice and parameterisation of mutation operators for permutation encodings.rnWe examine one method for adapting the choice of operator during runtime, and several different methods for adapting the rate at which the chosen operator is applied. In order to evaluate these algorithms, we have used a range of benchmark TSP problems. Of course this paper is not intended to present a state of the art in TSP solvers; rather, we use this well known problem as typical of many that require a permutation encoding, where our results indicate that self-adaptation can prove beneficial. The results show that GAs using appropriate methods to self-adapt their mutation operator and mutation rate find solutions of comparable or lower cost than algorithms with "static" operators, even when the latter have been extensively pretuned. Although the adaptive GAs tend to need longer to run, we show that is a price well worth paying as the time spent finding the optimal mutation operator and rate for the nonadaptive versions can be considerable. Finally, we evaluate the sensitivity of the self-adaptive methods to changes in the implementation, and to the choice of other genetic operators and population models. The results show that the methods presented are robust, in the sense that the performance benefits can be obtained in a wide range of host algorithms.
机译:突变率的选择对于任何遗传算法(GA)的成功都是至关重要的因素,对于排列表示,这还取决于几个替代突变算子的可用性。现在众所周知,没有任何一种“最佳选择”。相反,情况随问题实例的变化而变化。本文研究了这种选择是否可以通过自我适应留给进化过程,从而从G A用户中消除了这一琐碎的任务,并减少了由于(疏忽)不适当的决策而导致性能不佳的风险。对于连续域中的突变步长以及将按位突变应用于二进制编码的可能性,自适应已被证明是成功的。在这里,我们检查这是否可以转换为用于置换编码的突变算子的选择和参数化。我们研究了一种在运行时适应算子选择的方法,以及几种不同的方法来适应所选算子的应用率。为了评估这些算法,我们使用了一系列基准TSP问题。当然,本文并非旨在介绍TSP求解器的最新技术;相反,我们使用这个众所周知的问题作为需要置换编码的许多问题中的典型问题,我们的结果表明,自适应可以证明是有益的。结果表明,即使采用了“静态”算子,GA仍可以使用适当的方法来自适应其变异算子和变异率,从而找到与“静态”算子相比具有可比或更低成本的解决方案。尽管自适应GA往往需要更长的运行时间,但我们证明这是一个值得付出的价格,因为为非自适应版本寻找最佳变异算子和比率所花费的时间相当可观。最后,我们评估了自适应方法对实施变化以及对其他遗传算子和种群模型的选择的敏感性。结果表明,从可以在各种主机算法中获得性能优势的意义上来说,所提出的方法是可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号