首页> 外文期刊>Evolutionary computation >Runtime Analysis of an Evolutionary Algorithm for Stochastic Multi-Objective Combinatorial Optimization
【24h】

Runtime Analysis of an Evolutionary Algorithm for Stochastic Multi-Objective Combinatorial Optimization

机译:随机多目标组合优化的进化算法的运行时分析

获取原文
获取原文并翻译 | 示例

摘要

For stochastic multi-objective combinatorial optimization (SMOCO) problems, the adaptive Pareto sampling (APS) framework has been proposed, which is based on sampling and on the solution of deterministic multi-objective subproblems. We show that when plugging in the well-known simple evolutionary multi-objective optimizer (SEMO) as a subprocedure into APS, e-dominance has to be used to achieve fast convergence to the Pareto front. Two general theorems are presented indicating how runtime complexity results for APS can be derived from corresponding results for SEMO. This may be a starting point for the runtime analysis of evolutionary SMOCO algorithms.
机译:针对随机多目标组合优化(SMOCO)问题,提出了一种基于采样和确定性多目标子问题解决方案的自适应帕累托采样(APS)框架。我们表明,当将众所周知的简单进化多目标优化器(SEMO)作为APS的子过程插入时,必须使用e-dominance来实现对Pareto前沿的快速收敛。提出了两个一般性定理,表明如何从SEMO的相应结果中得出APS的运行时复杂性结果。这可能是演化SMOCO算法的运行时分析的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号