首页> 外文期刊>Evolutionary computation >General upper bounds on the runtime of parallel evolutionary algorithms
【24h】

General upper bounds on the runtime of parallel evolutionary algorithms

机译:并行进化算法运行时的一般上限

获取原文
获取原文并翻译 | 示例

摘要

We present a general method for analyzing the runtime of parallel evolutionary algorithms with spatially structured populations. Based on the fitness-level method, it yields upper bounds on the expected parallel runtime. This allows for a rigorous estimate of the speedup gained by parallelization. Tailored results are given for common migration topologies: ring graphs, torus graphs, hypercubes, and the complete graph. Example applications for pseudo-Boolean optimization show that our method is easy to apply and that it gives powerful results. In our examples the performance guarantees improve with the density of the topology. Surprisingly, even sparse topologies such as ring graphs lead to a significant speedup for many functions while not increasing the total number of function evaluations by more than a constant factor. We also identify which number of processors lead to the best guaranteed speedups, thus giving hints on how to parameterize parallel evolutionary algorithms.
机译:我们提出了一种通用方法,用于分析具有空间结构种群的并行进化算法的运行时间。基于适应性级别的方法,它会在预期的并行运行时上产生上限。这允许对并行化获得的加速进行严格的估计。针对常见的迁移拓扑提供了量身定制的结果:环形图,环形图,超立方体和完整图。伪布尔优化的示例应用程序表明,我们的方法易于应用,并且可以提供强大的结果。在我们的示例中,性能保证随拓扑密度的提高而提高。令人惊讶的是,即使是稀疏的拓扑结构(例如环形图)也可以显着提高许多功能的速度,而不会将功能评估的总数增加超过一个常数。我们还确定了导致最佳保证加速的处理器数量,从而为如何参数化并行进化算法提供了提示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号