首页> 外文期刊>Algorithmica >Analysing the Robustness of Evolutionary Algorithms to Noise: Refined Runtime Bounds and an Example Where Noise is Beneficial
【24h】

Analysing the Robustness of Evolutionary Algorithms to Noise: Refined Runtime Bounds and an Example Where Noise is Beneficial

机译:分析进化算法到噪声的鲁棒性:精细的运行时界限和噪声有益的示例

获取原文
获取原文并翻译 | 示例

摘要

We analyse the performance of well-known evolutionary algorithms, the (1 + 1) EA and the (1 + similar to) EA, in the prior noise model, where in each fitness evaluation the search point is altered before the evaluation with probability p. We present refined results for the expected optimisation time of these algorithms on the function -LeadingOnes, where bits have to be optimised in sequence. Previous work showed that the (1 + 1) EA on LeadingOnes runs in polynomial expected time if p = O((log n)/n2) and needs superpolynomial expected time if p = similar to((log n)/n), leaving a huge gap for which no results were known. We close this gap by showing that the expected optimisation time is similar to(n2) . exp(similar to(min{pn2, n})) for all p = 1/2, allowing for the first time to locate the threshold between polynomial and superpolynomial expected times at p = similar to((log n)/n2). Hence the (1 + 1) EA on -LeadingOnes is surprisingly sensitive to noise. We also show that offspring populations of size similar to = 3.42 log n can effectively deal with much higher noise than known before. Finally, we present an example of a rugged landscape where prior noise can help to escape from local optima by blurring the landscape and allowing a hill climber to see the underlying gradient. We prove that in this particular setting noise can have a highly beneficial effect on performance.
机译:我们分析了众所周知的进化算法的性能,(1 + 1)EA和(1 +类似于)EA,在先前的噪声模型中,在每个健身评估中,在使用概率p评估之前,搜索点被改变。我们对函数 - 整体噪音的这些算法的预期优化时间提出了精细的结果,其中必须按顺序优化位。以前的工作表明,如果p = o((log n)/ n2),则引导上的(1 + 1)EA在多项式预期时间内运行,并且如果p =类似于((log n)/ n),则需要superpolynomial预期时间没有结果的巨大差距。我们通过表明预期的优化时间与(N2)相似,我们缩短了这个差距。 exp(类似于(min {pn2,n}))对于所有p = 1/2,允许第一次在p =类似于((log n)/ n2)的p = pynomial和超级生成期预期时间之间的阈值。因此,在-Leadones上的(1 + 1)EA对噪声令人惊讶地敏感。我们还表明,类似于= 3.42 log n的大小的后代群体可以有效地处理比之前已知的更高的噪声。最后,我们提出了一个崎岖的景观的例子,其中噪音可以通过模糊景观并允许山地登山者看到潜在的梯度来帮助逃离当地最佳景观。我们证明,在这种特殊的环境中,噪音可以对性能具有高度有益的影响。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号