首页> 外文期刊>Environmetrics >Bayesian prediction of monthly precipitation on a fine grid using covariates based on a regional meteorological model
【24h】

Bayesian prediction of monthly precipitation on a fine grid using covariates based on a regional meteorological model

机译:基于区域气象模型的协变量贝叶斯精细网格上的月降水量预测

获取原文
获取原文并翻译 | 示例

摘要

In this article a Bayesian hierarchical model (BHM) for observed monthly precipitation is proposed. This BHM incorporates covariates based on an output on a fine grid from a regional meteorological model. At the data level of the BHM, the observed monthly precipitation is transformed using the Box–Cox transformation, and each month is modeled separately. To capture spatial correlation at the data level, a Gaussian field with Matérn correlation function is used. It is assumed that the data are subject to measurement error. The location and log-scale parameters at the latent level are also modeled with Gaussian fields with Matérn correlation functions. An output from a regional meteorological model on a fine grid is used to construct spatial covariates for the latent parameters of the BHM for each month of the year. These covariates are then projected onto each of the observed sites for each month and incorporated into the BHM. Markov chain Monte Carlo simulation is used for posterior inference and Bayesian kriging is used to predict the latent parameters on the grid. This BHM was applied to observed data on monthly precipitation, which come from forty sites across Iceland from the years 1958 to 2006. The data were corrected for wind, wetting, and evaporation loss. An output from a linear model of orographic precipitation defined on a 1km by 1km grid over Iceland was used to construct the covariates for the BHM. Copyright © 2015 John Wiley & Sons, Ltd.
机译:在本文中,提出了用于观测月降水量的贝叶斯分层模型(BHM)。该BHM结合了协变量,这些协变量基于区域气象模型的细网格上的输出。在BHM的数据级别上,使用Box-Cox转换对观测到的每月降水进行转换,并对每个月分别建模。为了在数据级别捕获空间相关性,使用具有Matérn相关函数的高斯场。假定数据容易出现测量误差。还使用具有Matérn相关函数的高斯场对潜在水平上的位置和对数尺度参数进行建模。细网格上区域气象模型的输出用于构造每年每个月BHM潜在参数的空间协变量。然后将这些协变量投影到每个月的每个观察到的位点上,并合并到BHM中。马尔可夫链蒙特卡罗模拟用于后验推理,贝叶斯克里金法用于预测网格上的潜在参数。该BHM用于观测的月降水量数据,这些数据来自1958年至2006年冰岛各地的40个站点​​。该数据已针对风,湿润和蒸发损失进行了校正。在冰岛上以1公里x 1公里的网格上定义的地形降水量线性模型的输出用于构建BHM的协变量。版权所有©2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号