首页> 外文学位 >Using remote sensing and grid-based meteorological datasets for regional soybean crop yield prediction and crop monitoring.
【24h】

Using remote sensing and grid-based meteorological datasets for regional soybean crop yield prediction and crop monitoring.

机译:使用遥感和基于网格的气象数据集进行区域大豆产量预测和作物监测。

获取原文
获取原文并翻译 | 示例

摘要

Regional crop yield estimations using crop models is a national priority due to its contributions to crop security assessment and food pricing policies. Many of these crop yield assessments are performed using time-consuming, intensive field surveys. This research was initiated to test the applicability of remote sensing and grid-based meteorological model data for providing improved and efficient predictive capabilities for crop bio-productivity.;The soybean prediction model (Sinclair model) used in this research, requires daily data inputs to simulate yield which are temperature, precipitation, solar radiation, day length initialization of certain soil moisture parameters for each model run. The traditional meteorological datasets were compared with simulated South American Land Data Assimilation System (SALDAS) meteorological datasets for Sinclair model runs and for initializing soil moisture inputs. Considering the fact that grid-based meteorological data has the resolution of 1/8th of a degree, the estimations demonstrated a reasonable accuracy level and showed promise for increase in efficiency for regional level yield predictions.;The research tested daily composited Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensor (both AQUA and TERRA platform) and simulated Visible/Infrared Imager Radiometer Suite (VIIRS) sensor product (a new sensor planned to be launched in the near future) for crop growth and development based on phenological events. The AQUA and TERRA fusion based daily MODIS NDVI was utilized to develop a planting date estimation method. The results have shown that daily MODIS composited NDVI values have the capability for enhanced monitoring of soybean crop growth and development. The method was able to predict planting date within +/-3.4 days. A geoprocessing framework for extracting data from the grid data sources was developed. Overall, this study was able to demonstrate the utility of MODIS and VIIRS NDVI datasets and SALDAS meteorological data for providing effective inputs to crop yield models and the ability to provide an effective remote sensing-based regional crop monitoring. The utilization of these datasets helps in eliminating the ground-based data collection, which improves cost and time efficiency and also provides capability for regional crop monitoring.
机译:由于对作物安全评估和粮食价格政策做出了贡献,因此使用作物模型进行区域作物产量估算是一项国家优先事项。这些作物产量评估中有许多是使用费时的密集实地调查进行的。这项研究旨在测试遥感和基于网格的气象模型数据的适用性,以提供提高的,有效的农作物生物生产力预测能力。这项研究中使用的大豆预测模型(Sinclair模型)需要每天输入数据模拟产量,包括温度,降水,太阳辐射,每个模型运行的某些土壤湿度参数的日长初始化。将传统的气象数据集与模拟的南美土地数据同化系统(SALDAS)气象数据集进行了比较,以进行Sinclair模型运行和初始化土壤水分输入。考虑到基于栅格的气象数据的分辨率为1/8度的事实,这些估计值显示出合理的准确度水平,并显示了提高区域水平产量预测的效率的希望。中分辨率成像光谱仪(MODIS)传感器(AQUA和TERRA平台)和模拟可见/红外成像辐射仪套件(VIIRS)传感器产品(计划在不久的将来推出的新传感器)的NDVI(NDVI),用于作物的生长和发育根据物候事件。利用基于AQUA和TERRA融合的每日MODIS NDVI来开发种植日期估算方法。结果表明,每日MODIS合成的NDVI值可以增强对大豆作物生长和发育的监测。该方法能够预测+/- 3.4天内的播种日期。开发了用于从网格数据源提取数据的地理处理框架。总的来说,这项研究能够证明MODIS和VIIRS NDVI数据集以及SALDAS气象数据在为作物产量模型提供有效输入以及提供有效的基于遥感的区域作物监测的能力方面的实用性。这些数据集的利用有助于消除基于地面的数据收集,从而提高了成本和时间效率,还提供了区域作物监测的功能。

著录项

  • 作者

    Mali, Preeti.;

  • 作者单位

    Mississippi State University.;

  • 授予单位 Mississippi State University.;
  • 学科 Agriculture Agronomy.;Remote Sensing.;Geodesy.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号