首页> 外文期刊>Environmental Modeling & Assessment >Hierarchical-Generalized Pareto Model for Estimation of Unhealthy Air Pollution Index
【24h】

Hierarchical-Generalized Pareto Model for Estimation of Unhealthy Air Pollution Index

机译:估计不健康空气污染指数的分层通用帕吻模型

获取原文
获取原文并翻译 | 示例

摘要

A common way of modeling the exceedance of air pollution index (API) data is to utilize the generalized Pareto distribution (GPD). The marginal GPD model is a good method for describing unhealthy API data. However, for data with multiple locations, integrating the information of GDP models from each location with a hierarchical model (HM) will provide a better result. In this study, a hierarchical-generalized Pareto model (HM-GPD) is used to integrate the information about location and seasonal effects from the marginal GPD models of hourly API exceedance data, along with the information of serial dependence at each location. The accuracy of inferences at a single site and in each season was improved by employing a Gaussian model for the random effects; this model takes advantage of the climatological structure in the data. The temporal dependence was modeled by using first-order Markov chains. This step was performed by operating the posterior draws from HM-GPD to transform the marginal models for each site to unit Frechet by using the Markov chain model likelihood. Overall, the parameters estimated from the HM-GPD are able to provide precise estimation of the return levels for each site.
机译:建模超出空气污染指数(API)数据的常用方式是利用广义帕吻孔分布(GPD)。边缘GPD模型是描述不健康API数据的好方法。但是,对于具有多个位置的数据,将GDP模型的信息与分层模型(HM)集成在一起,将提供更好的结果。在本研究中,使用分层通用的Pareto模型(HM-GPD)来集成来自每小时API的边缘GPD模型的位置和季节性效果的信息,以及每个位置的串行依赖的信息。通过使用用于随机效应的高斯模型,改善了单一站点和每个季节的推断的准确性;该模型利用数据中的气候结构。通过使用首级马尔可夫链进行建模时间依赖性。通过操作HM-GPD的后射来进行该步骤,以通过使用Markov链模型可能性来将每个站点的边缘模型转换为单元Frechet。总的来说,从HM-GPD估计的参数能够为每个站点提供精确估计返回级别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号