首页> 外文期刊>Engineering with Computers >Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis
【24h】

Nonlinear dynamics and stability of viscoelastic nanoplates considering residual surface stress and surface elasticity effects: a parametric excitation analysis

机译:粘弹性纳米型视表考虑剩余表面应力和表面弹性效应的非线性动力学和稳定性:参数励磁分析

获取原文
获取原文并翻译 | 示例

摘要

The present study mainly investigates surface effect on nonlinear dynamic instability of viscoelastic nanoplates under para-metric excitation. In fact, great attention is given to the influence of residual surface stress on nonlinear dynamic behavior of the system. To achieve this goal, the governing equation of motion is derived by modeling a nanoplate embedded on a visco-Pasternak foundation and then, applying surface effect relations, nonlocal elasticity and nonlinear von Karman theories and Hamilton's principle, respectively. Galerkin technique and multiple time scales method are also used to solve the equation. A class of nonlinear Mathieu-Hill equation is established to determine the bifurcations and the regions of nonlinear dynamic instability. The numerical results are performed, while the emphasis is placed on investigating the effect of residual surface stress, visco-Pasternak foundation coefficients, and parametric excitation. It is shown how residual surface stress leads to high values of amplitude response. Finally, stable and unstable regions in dynamic instability of viscoelastic nanoplates are addressed.
机译:本研究主要研究了对公制激发下粘弹性纳米板的非线性动态不稳定性的表面影响。事实上,对系统的非线性动力学行为的影响很大。为了实现这一目标,通过将嵌入在Visco-Pasternak基础上的纳米板建模,然后施加表面效应关系,非局部弹性和非线性von Karman理论和汉密尔顿原则,来源的运动方程。 Galerkin技术和多个时间尺度方法还用于解决方程。建立一类非线性Mathieu-Hill方程以确定分叉和非线性动态不稳定性的区域。进行数值结果,而重点在于研究残留表面应力,Visco-Pasternak基础系数和参数激发的影响。示出了剩余表面应力如何导致高值幅度响应。最后,解决了粘弹性纳米板的动态稳定性的稳定和不稳定区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号