首页> 外文期刊>Engineering with Computers >Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: an analytical study
【24h】

Effect of residual surface stress on parametrically excited nonlinear dynamics and instability of double-walled nanobeams: an analytical study

机译:残余表面应力对双墙纳米束型分子膨胀非线性动力学和不稳定性的影响:分析研究

获取原文
获取原文并翻译 | 示例

摘要

A class of nonlinear Mathieu-Hill equation is established to determine the bifurcations and the regions of nonlinear dynamic instability of a short double-walled nanobeam, while the emphasis is placed on investigating the effect of residual surface stress on instability. To achieve this goal, first, a short double-walled nanobeam is modeled and embedded on a viscoelastic foundation and subjected to an axial parametric force. Second, based on the nonlocal elasticity and nonlinear von Karman beam theories, the nonlinear governing equation of motion is derived. Finally, Galerkin technique and multiple time scales method are used to solve the equation. Numerical examples are treated which show various discontinuous bifurcations. Also, infinitely stable and unstable solutions are addressed.
机译:建立了一类非线性Mathieu-Hill方程,以确定短壁纳米束的分叉和非线性动态不稳定性的区域,同时重点阐述了对剩余表面应力对不稳定性的影响。为了实现这一目标,首先,将简短的双壁纳米束模拟并嵌入粘弹性基础上并进行轴向参数力。其次,基于非识别弹性和非线性von Karman光束理论,推导出运动的非线性控制方程。最后,使用Galerkin技术和多个时间尺度方法来解决方程。处理数值实例,其显示各种不连续分叉的分叉。此外,解决了无限稳定和不稳定的解决方案。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号