首页> 外文期刊>Engineering with Computers >Chebyshev polynomials for the numerical solution of fractal-fractional model of nonlinear Ginzburg-Landau equation
【24h】

Chebyshev polynomials for the numerical solution of fractal-fractional model of nonlinear Ginzburg-Landau equation

机译:非线性金兹堡 - 陆地方程分形 - 分形模型数值解的Chebyshev多项式

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new version for the nonlinear Ginzburg-Landau equation derived from fractal-fractional derivatives and proposes a computational scheme for their numerical solutions. The fractal-fractional derivative is defined in the Atangana-Riemann-Liouville sense with Mittage-Leffler kernel. The proposed approach is based on the shifted Chebyshev polynomials (S-CPs) and the collocation scheme. Through the way, a new operational matrix (OM) of fractal-fractional derivative is derived for the S-CPs and used in the presented method. More precisely, the unknown solution is separated into their real and imaginary parts, and then, these parts are expanded in terms of the S-CPs with undetermined coefficients. These expansions are substituted into the main equation and the generated operational matrix is utilized to extract a system of nonlinear algebraic equations. Thereafter, the yielded system is solved to obtain the approximate solution of the problem. The accuracy of the proposed approach is examined through some numerical examples. Numerical results confirm the suggested approach is very accurate to provide satisfactory results.
机译:本文介绍了来自分数分数衍生物的非线性金茨堡 - Landau方程的新版本,并提出了一种计算方案的数值解决方案。分形分数衍生物在ATANGANA-RIEMANN-LIOUVILLESEST中定义,用贴图 - 利用梅勒内核。所提出的方法基于转移的Chebyshev多项式(S-CP)和搭配方案。通过方式,为S-CPS导出分形分数衍生物的新操作矩阵(OM),并以所提出的方法使用。更精确地,未知的解决方案被分成其实部和虚部,然后,这些部件以未确定的系数的拟合系数扩展。这些扩展被代入主方程,并且利用所产生的操作矩阵来提取非线性代数方程的系统。此后,解决了所产生的系统以获得问题的近似解。通过一些数值例子检查所提出的方法的准确性。数值结果证实了建议的方法非常准确,以提供令人满意的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号