首页> 外文期刊>Engineering with Computers >The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model
【24h】

The element-free Galerkin method based on moving least squares and moving Kriging approximations for solving two-dimensional tumor-induced angiogenesis model

机译:基于移动最小二乘的无元素Galerkin方法和移动克里格近似求解二维肿瘤诱导的血管生成模型

获取原文
获取原文并翻译 | 示例

摘要

The numerical simulation of the tumor-induced angiogenesis process is an useful tool for the prediction of this mechanism and drug targeting using anti-angiogenesis strategy. In the current paper, we study numerically on the continuous mathematical model of tumor-induced angiogenesis in two-dimensional spaces. The studied model is a system of nonlinear time-dependent partial differential equations, which describes the interactions between endothelial cell, tumor angiogenesis factor and fibronectin. We first derive the global weak form of the model and discretize the time variable via a semi-implicit backward Euler method. To approximate the spatial variables of the studied model, we use a meshless technique, namely element-free Galerkin. Also, the shape functions of moving least square and moving Kriging approximations are used in this method. The main difference between two meshless methods proposed here is that the shape functions of moving least squares approximation do not satisfy Kroncker's delta property, while moving Kriging technique satisfies this property. Also, both techniques do not require the generation of a mesh for approximation, but a background mesh is needed to compute the numerical integrations, which are appeared in the derived global weak form. The full-discrete scheme obtained here gives the linear system of algebraic equations that is solved via an iterative method, namely biconjugate gradient stabilized with zero-fill incomplete lower upper (ILU) preconditioner. Some numerical simulations are provided to illustrate the ability of the presented numerical methods, which show the endothelial cell migration in response to the tumor angiogenesis factors during angiogenesis process as well.
机译:肿瘤诱导的血管生成过程的数值模拟是使用抗血管生成策略预测该机制和药物靶向的有用工具。在目前的论文中,我们在二维空间中的肿瘤诱导的血管生成的连续数学模型上进行数值研究。研究模型是非线性时间依赖性部分微分方程的系统,其描述了内皮细胞,肿瘤血管生成因子和纤维菌蛋白之间的相互作用。我们首先通过半隐式向后欧拉方法派生模型的全局弱形式,并通过半隐式向后欧拉方法离散时间变量。为了近似研究模型的空间变量,我们使用无网格技术,即无元素的Galerkin。而且,在该方法中使用移动最小二乘和移动kriging近似的形状函数。这里提出的两个无网格方法之间的主要区别在于,移动最小二乘近似的形状函数不满足Kroncker的Delta属性,同时移动的Kriging技术满足该属性。此外,这两种技术都不需要生成网格以近似,但是需要一个背景网格来计算以衍生的全局弱形式出现的数值积分。这里获得的全离散方案给出了通过迭代方法解决的代数方程的线性系统,即用零填充不完全下部(ILU)预处理器稳定的双缀合物梯度。提供了一些数值模拟以说明所提出的数值方法的能力,其表明血管生成过程中肿瘤血管生成因子的内皮细胞迁移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号