首页> 外文期刊>Engineering Structures >Online weighted LS-SVM for hysteretic structural system identification
【24h】

Online weighted LS-SVM for hysteretic structural system identification

机译:在线加权LS-SVM用于滞后结构系统识别

获取原文
获取原文并翻译 | 示例

摘要

The identification of structural damage is an important objective of health monitoring for civil infrastructures. Frequently, damage to a structure may be reflected by a change of some system parameters, such as a degradation of the stiffness. In this paper, we propose an online sequential weighted Least Squares Support Vector Machine (LS-SVM) technique to identify the structural parameters and their changes when vibration data involve damage events. It efficiently updates a trained LS-SVM by means of incremental updating and decremental pruning algorithms whenever a sample is added to, or removed from, the training set, and robustness is improved by the use of an additional weighted LS-SVM step. This method overcomes the drawback of sparseness lost within the LS-SVM and makes LS-SVM for online system identification possible. The proposed method is capable of tracking abrupt or slow time changes of the system parameters from which the damage event and the severity of the structural damage can be detected and evaluated. Simulation results for tracking the parametric non-stationary changes of non-linear hysteretic structures are presented to demonstrate the application and effectiveness of the proposed technique in detecting the structural damage.
机译:识别结构损坏是民用基础设施健康监控的重要目标。通常,对结构的损坏可能会通过某些系统参数的变化(例如,刚度的下降)反映出来。在本文中,我们提出了一种在线顺序加权最小二乘支持向量机(LS-SVM)技术,以识别振动数据涉及损伤事件时的结构参数及其变化。每当将样本添加到训练集中或从训练集中删除样本时,它都会通过增量更新和递减修剪算法有效地更新经过训练的LS-SVM,并且通过使用附加的加权LS-SVM步骤可以提高鲁棒性。该方法克服了LS-SVM内部丢失的稀疏性的缺点,并使LS-SVM用于在线系统识别成为可能。所提出的方法能够跟踪系统参数的突然或缓慢的时间变化,由此可以检测和评估破坏事件和结构破坏的严重性。给出了跟踪非线性滞后结构参数非平稳变化的仿真结果,以证明该技术在检测结构损伤中的应用和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号