【24h】

Online LS-SVM Based Nonlinear System Identification

机译:基于在线LS-SVM的非线性系统辨识

获取原文

摘要

Least Squares Support Vector Machine (LS-SVM) is an effective method for nonlinear system identification, which is a fundamental topic of control theory. As the conventional training algorithms of LS-SVM are inefficient in online nonlinear system identification, an online learning algorithm is proposed. The online algorithm is suitable for the large data set and practical applications where the data come in sequentially. To illustrate the favorable performance of the online LS-SVM, a nonlinear system identification experiment is considered. The simulation results indicate that the online LS-SVM outperforms conventional LS-SVM with higher efficiency and accuracy of learning.
机译:最小二乘支持向量机(LS-SVM)是非线性系统辨识的有效方法,是控制理论的基础。由于传统的LS-SVM训练算法在在线非线性系统辨识中效率低下,因此提出了一种在线学习算法。在线算法适合于大数据集和数据按顺序进入的实际应用。为了说明在线LS-SVM的良好性能,考虑了非线性系统识别实验。仿真结果表明,在线LS-SVM以更高的学习效率和准确性优于传统的LS-SVM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号