首页> 外文期刊>Engineering Structures >Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration
【24h】

Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration

机译:Hilbert变换的解析模式分解用于环境振动下建筑物的模态参数识别

获取原文
获取原文并翻译 | 示例

摘要

A new analytical mode decomposition method in combination with the conventional random decrement technique is proposed for modal parameter identification under ambient vibration. The random decrement technique is used to extract the free vibration information from ambient vibration including closely-spaced modes. The analytical mode decomposition is developed with Hilbert transform to decompose the extracted free vibration with closely spaced natural frequencies into a series of modal responses from which modal parameters are evaluated. Emphasis in this study is placed on the characterization of frequency resolution, time duration effect, identification accuracy, and experimental validation of the new method. An energy error index is introduced and defined as the ratio between the squared modal response error and the exact modal energy over the response duration, accounting for the effects of both response amplitude and phase. Parametric studies with a 2-story building demonstrated a reduction of the energy error index from 88% with ambient vibration to 7.5% with 20-s free vibration, corresponding to a natural frequency space index of 0.033. The maximum error of the identified frequencies in all cases is less than 1%. At a frequency space index of 0.05, the energy error indices are less than 20% and 5% using 1 -s and 7-s free vibration, respectively. The new method is then validated with shake table testing of a 3-story building frame installed with a tuned mass damper, and applied to a 36-story shear building with a 4-story light appendage with closely spaced modes. Both experiments and simulations showed high accuracy and effectiveness of the new method for building system identification from ambient vibration even when 5% noise.
机译:提出了一种结合常规随机减量技术的解析模式分解新方法,用于环境振动下的模态参数识别。随机减量技术用于从包括紧密间隔模式的环境振动中提取自由振动信息。利用希尔伯特(Hilbert)变换进行分析模式分解,以将提取的自由振动与紧密间隔的固有频率分解为一系列模态响应,从中可以评估模态参数。这项研究的重点是频率分辨率的表征,持续时间效应,识别精度以及新方法的实验验证。引入能量误差指数,并将其定义为响应持续时间内平方模态响应误差与精确模态能量之间的比率,同时考虑了响应幅度和相位的影响。使用2层建筑物进行的参数研究表明,能量误差指数从环境振动的88%降低到20s自由振动的7.5%,对应于0.033的固有频率空间指数。在所有情况下,识别出的频率的最大误差均小于1%。在0.05的频率空间指数下,分别使用1 -s和7-s自由振动的能量误差指数分别小于20%和5%。然后,通过对装有调谐质量阻尼器的3层建筑框架进行振动台测试来验证该新方法,并将该方法应用于具有4层轻质附属物且间隔紧密的模式的36层剪力建筑。实验和仿真均表明,即使在噪声为5%的情况下,该新方法也可以从环境振动中识别建筑物系统的新方法的准确性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号