首页> 外文期刊>Engineering Structures >Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams
【24h】

Machine learning framework for predicting failure mode and shear capacity of ultra high performance concrete beams

机译:用于预测超高性能混凝土梁的故障模式和剪切容量的机器学习框架

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a data-driven machine learning (ML) framework for predicting failure mode and shear capacity of Ultra High Performance Concrete (UHPC) beams. To this end, a comprehensive database on 360 reported tests on UHPC beams with different geometric, fiber properties, loading and material characteristics was collected. This database was then analyzed utilizing different ML algorithms including, support vector machine (SVM), artificial neural networks (ANN), k-nearest neighbor (k-NN), and genetic programing (GP), to identify key parameters governing failure pattern and shear capacity of UHPC beams. The outcome of this analysis is a computational-based ML framework that is capable of identifying failure mode of UHPC beams and simplified expressions for predicting shear capacity of UHPC beams. Predictions obtained from the proposed framework was compared against the values obtained from design equations in codes, and also results from full-scale tests to show the reliability of the proposed approach. The results clearly infer that the proposed data-driven ML framework can effectively predict failure mode and shear capacity of prestressed and non-prestressed UHPC beams with varying reinforcement detailing and configurations.
机译:本文介绍了一种数据驱动的机器学习(ML)框架,用于预测超高性能混凝土(UHPC)光束的故障模式和剪切容量。为此,360上的全面数据库报告了收集了不同几何,光纤性能,装载和材料特性的UHPC光束的测试。然后利用不同的ML算法分析该数据库,包括支持向量机(SVM),人工神经网络(ANN),K最近邻(K-NN)和遗传编程(GP),以识别控制失败模式的关键参数UHPC梁的剪切容量。该分析的结果是基于计算的ML框架,其能够识别UHPC波束的故障模式和用于预测UHPC光束的剪切容量的简化表达式。将从所提出的框架获得的预测与从代码中的设计方程获得的值进行比较,并且还由满量程测试结果来显示所提出的方法的可靠性。结果清楚地推断出所提出的数据驱动ML框架可以有效地预测预应力和非预应力UHPC梁的故障模式和剪切容量,具有不同的加强细节和配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号