首页> 外文期刊>Engineering Structures >Machine learning model for predicting structural response of RC slabs exposed to blast loading
【24h】

Machine learning model for predicting structural response of RC slabs exposed to blast loading

机译:用于预测暴露于爆破载荷的RC板结构响应的机器学习模型

获取原文
获取原文并翻译 | 示例

摘要

Considering the risk of exposure of diverse structures to detonations and explosions, the need for understanding the structural behavior under such events and enhancing blast resistance is a growing topic of importance. The present study introduces a machine learning model to predict the maximum displacement (output) of reinforced concrete slabs exposed to blast loading using ten (input) features including length, width, and thickness of the slab, concrete compressive strength, reinforcing steel yield strength, steel reinforcement ratio, reflected impulse, blast scaled distance, type of slab, and slab support. The dataset used in this study consists of 150 data points compiled from studies retrieved from the open literature. The effect that each input feature has on the output was investigated using the variable importance measure, Permutation Feature Importance, in which the effect of features is compared to parametric studies found in the literature. The Random Forests algorithm was used to develop the learning model and its performance was compared to that of other learning algorithms. Additionally, a hybrid classification-regression Random Forests algorithm was implemented for the development of the final model. The performance of the machine learning model in predicting maximum slab displacement under blast loading was satisfactory with a MAE value of 4.38, a VEcv value of 94.4%, and an R-2 value of 96.2%, while being computationally more effective than existing numerical approaches.
机译:考虑到曝光不同结构的风险,以引爆和爆炸,了解在此类事件下的结构行为和增强抗爆震的必要性是一个不断增长的重要性。本研究介绍了一种机器学习模型,以预测使用十(输入)特征的钢筋混凝土板的最大位移(输出)使用十(输入)特征,包括长度,宽度和板坯的厚度,混凝土抗压强度,增强钢屈服强度,钢筋率,反射脉冲,鼓胀距离,板坯型和板坯。本研究中使用的数据集由从开放文献中检索的研究编制的150个数据点组成。使用变量重要性测量,排列特征重要性来研究每个输入特征对输出的影响,其中特征的效果与文献中发现的参数研究进行了比较。随机森林算法用于开发学习模型,其性能与其他学习算法的性能进行了比较。另外,对最终模型的开发实施了混合分类回归随机森林算法。在预测爆炸载荷下预测最大平板位移时的机器学习模型的性能令人满意,MAE值为4.38,VECV值为94.4%,R-2值为96.2%,同时计算比现有数值方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号