首页> 外文期刊>Engineering Structures >System-level modeling methodology for capturing the pile cap, helical pile group, and soil interaction under uplift loads
【24h】

System-level modeling methodology for capturing the pile cap, helical pile group, and soil interaction under uplift loads

机译:用于捕获挤出载荷下桩帽,螺旋桩组和土壤相互作用的系统级模型方法

获取原文
获取原文并翻译 | 示例

摘要

In tall and light structures, such as transmission towers, wind turbines, and light-gauge steel structures, there is an increasing application of pile cap with helical pile foundation systems to resist the uplift loads due to the effects of windstorms and earthquakes. There is a lack of knowledge, published literature, or analysis methods to account for the effects of the pile cap, helical pile group, and soil interactions on the holistic response of the foundations, particularly, for the load conditions creating net uplift loads. In the lack of such, discrete modeling approaches are frequently employed in practice. These approaches isolate each system component and analyze them individually, neglecting the interactions between them. In an attempt to bridge this knowledge gap, this study proposes a system-level modeling methodology for the holistic analysis of pile cap systems in dry soil and static load conditions, while accounting for the effects of interactions between system components and the inherent material nonlinearities. The methodology employs a three-stage process in which the material and interaction properties are calibrated with the experimental benchmark specimens. The failure mechanisms are also experimentally verified based on the relative displacement of the piles. Important modeling considerations are discussed, and experimental benchmark specimens are provided to assist practitioners in accurately per-forming system-level analyses. The effectiveness of the proposed methodology is discussed, and the responses obtained, including the load-displacement responses, load capacities, and failure modes, are compared with those obtained from the discrete modeling approaches. The results demonstrate that discrete modeling ap-proaches significantly underestimate the load capacity while not accurately predicting the governing behavior and the failure modes.
机译:在高大和光线结构中,如传动塔,风力涡轮机和灯具钢结构,桩帽与螺旋桩基础系统越来越多地应用,以抵抗由于风暴和地震的影响而抵抗隆起载荷。缺乏知识,出版的文献或分析方法,以考虑桩帽,螺旋桩组和土壤相互作用对基础的整体响应的影响,特别是对于产生净隆起负荷的负载条件。在缺乏这样的情况下,在实践中经常使用离散的建模方法。这些方法隔离每个系统组件并单独分析它们,忽略它们之间的相互作用。在试图弥合这一知识缺口的情况下,本研究提出了一种系统级模拟方法,用于干旱土壤和静载条件中桩帽系统的整体分析,同时占系统组分与固有材料非线性之间相互作用的影响。该方法采用三阶段过程,其中材料和相互作用性能与实验基准标本校准。还基于桩的相对位移进行实验验证故障机制。讨论了重要的建模考虑因素,并提供了实验基准标本,以协助从业者在准确的每形成系统水平分析中进行。讨论了所提出的方法的有效性,与从离散建模方法获得的那些相比,获得的响应,包括负载 - 位移响应,负载容量和失效模式。结果表明,离散建模AP-PICACHS显着低估了负载能力,同时不准确预测控制行为和故障模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号