首页> 外文期刊>Engineering Structures >Bayes-Mode-ID: A Bayesian modal-component-sampling method for operational modal analysis
【24h】

Bayes-Mode-ID: A Bayesian modal-component-sampling method for operational modal analysis

机译:Bayes-Mode-ID:一种用于操作模态分析的贝叶斯模态分量采样方法

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian modal-component-sampling system identification (Bayes-Mode-ID) method is developed in this paper. This method can efficiently identify the modal parameters of civil engineering structures under operational conditions even when the number of measured degrees of freedom (DOFs) is large. The mathematical model of the dynamic system is constructed with the modal parameters being the system parameters and the posterior probability density function (PDF) of these modal parameters is formulated using Bayes theorem. Bayesian modal analysis is conducted through generating samples of the modal parameters in the important regions of the posterior PDF. The proposed method can identify the most probable (maximum posterior) values (MPVs) of the modal parameters, together with the corresponding posterior uncertainties based on the generated samples, without assuming an approximate form for the posterior PDF. There are two main difficulties in sampling modal parameters from the posterior PDF. Firstly, it is not possible to analytically normalize the posterior PDF. Secondly, the number of the modal parameters is usually large so the samples cannot be efficiently generated in the important region of the posterior PDF. The proposed component sampling algorithm is tailor made to handle these two problems. This paper covers the theoretical development of the Bayes-Mode-ID for operational modal analysis together with two experimental case studies under laboratory conditions.
机译:本文提出了一种贝叶斯模态分量采样系统识别(Bayes-Mode-ID)方法。即使测量的自由度(DOF)数量很大,此方法也可以在操作条件下有效地识别土木工程结构的模态参数。以模态参数为系统参数,建立了动态​​系统的数学模型,并利用贝叶斯定理建立了这些模态参数的后验概率密度函数(PDF)。贝叶斯模态分析是通过在后部PDF的重要区域中生成模态参数样本来进行的。所提出的方法可以识别模态参数的最可能(最大后验)值(MPV),以及基于生成的样本的相应后验不确定性,而无需假设后验PDF的近似形式。从后PDF采样模态参数有两个主要困难。首先,不可能对后PDF进行解析标准化。其次,模态参数的数量通常很大,因此无法在后PDF的重要区域中有效地生成样本。拟定的组件采样算法是为解决这两个问题而量身定制的。本文介绍了用于操作模态分析的贝叶斯模式ID的理论发展以及在实验室条件下的两个实验案例研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号