首页> 外文期刊>Engineering Structures >Bayes-Mode-ID: A Bayesian modal-component-sampling method for operational modal analysis
【24h】

Bayes-Mode-ID: A Bayesian modal-component-sampling method for operational modal analysis

机译:Bayes-Mode-ID:用于操作模态分析的贝叶斯模态 - 组件采样方法

获取原文
获取原文并翻译 | 示例

摘要

A Bayesian modal-component-sampling system identification (Bayes-Mode-ID) method is developed in this paper. This method can efficiently identify the modal parameters of civil engineering structures under operational conditions even when the number of measured degrees of freedom (DOFs) is large. The mathematical model of the dynamic system is constructed with the modal parameters being the system parameters and the posterior probability density function (PDF) of these modal parameters is formulated using Bayes theorem. Bayesian modal analysis is conducted through generating samples of the modal parameters in the important regions of the posterior PDF. The proposed method can identify the most probable (maximum posterior) values (MPVs) of the modal parameters, together with the corresponding posterior uncertainties based on the generated samples, without assuming an approximate form for the posterior PDF. There are two main difficulties in sampling modal parameters from the posterior PDF. Firstly, it is not possible to analytically normalize the posterior PDF. Secondly, the number of the modal parameters is usually large so the samples cannot be efficiently generated in the important region of the posterior PDF. The proposed component sampling algorithm is tailor made to handle these two problems. This paper covers the theoretical development of the Bayes-Mode-ID for operational modal analysis together with two experimental case studies under laboratory conditions.
机译:本文开发了贝叶斯模态组件采样系统识别(贝叶斯模式-D)方法。即使当测量的自由度(DOFS)的数量大,该方法也可以有效地识别运行条件下的土木工程结构的模态参数。动态系统的数学模型用模态参数构造是系统参数,并且使用贝叶斯定理制定了这些模态参数的后验概率密度函数(PDF)。贝叶斯模态分析是通过在后部PDF的重要区域中产生模态参数的样本进行的。所提出的方法可以识别模态参数的最可能(最大后后部)(MPV)(MPV),以及基于所产生的样本的相应的后部不确定性,而不假设后部PDF的近似形式。从后部PDF采样模态参数有两种主要困难。首先,不可能分析后部的PDF。其次,模态参数的数量通常很大,因此在后部PDF的重要区域中不能有效地产生样品。所提出的组件采样算法是定制的,以处理这两个问题。本文涵盖了在实验室条件下的两个实验案例研究的操作模态分析的贝叶斯模式ID的理论发展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号