首页> 外文期刊>Engineering Structures >A temperature-driven MPCA method for structural anomaly detection
【24h】

A temperature-driven MPCA method for structural anomaly detection

机译:温度驱动的MPCA结构异常检测方法

获取原文
获取原文并翻译 | 示例

摘要

An important issue in structural health monitoring (SHM) is to develop appropriate algorithms that can explicitly extract meaningful changes in measurements due to structural anomalies, especially damage. However, the effects due to environmental factors, especially temperature variations may produce significant misinterpretations. Consequently, developing solutions to identify the structural anomaly, accounting for temperature influence, from measurements, is crucial and highly anticipated. This paper presents a Temperature-driven Moving Principal Component Analysis method, designated as Td-MPCA, for anomaly detection. The Td-MPCA introduces the idea of blind source separation (BSS) for thermal identification with intent to enhance the performance of Moving Principal Component Analysis (MPCA) for anomaly detection. To achieve this target, temperature-induced strain variations are first investigated and revealed by employing Independent Component Analysis based on maximization non-Gaussianity, also known as Fast ICA. Afterwards, the MPCA is adopted for anomaly detection on the separated temperature-related response. Three case studies are provided in this paper to evaluate the proposed method. The first one is a numerical truss bridge with a simulated 5% stiffness reduction. The results confirm that Td-MPCA is more sensitive than MPCA in detecting anomalies, where the simulated stiffness loss fails to be detected by MPCA. The second case study is on an experimental truss bridge where two damage scenarios are introduced and interpreted. The detection results show that Td-MPCA outperforms MPCA since the damage is identified at the expected time by Td-MPCA but not by MPCA. The third case study is an in-situ curved viaduct in Switzerland. Data acquired during both construction period and normal service period has been used for interpretation. Results demonstrate that Td-MPCA is able to identify the date of change in construction process without any delay when compared with the application of MPCA only.
机译:结构健康监测(SHM)中的一个重要问题是开发适当的算法,该算法可以显式提取由于结构异常(尤其是损坏)而导致的有意义的测量变化。但是,由于环境因素(尤其是温度变化)引起的影响可能会产生重大的误解。因此,开发解决方案以识别结构异常并从测量中考虑温度影响是至关重要的,也是高度期望的。本文提出了一种温度驱动的移动主成分分析方法,称为Td-MPCA,用于异常检测。 Td-MPCA引入了用于热识别的盲源分离(BSS)的想法,旨在增强用于检测异常的移动主成分分析(MPCA)的性能。为了实现该目标,首先通过基于最大化非高斯性的独立分量分析(也称为Fast ICA)来研究和揭示温度引起的应变变化。之后,采用MPCA对分离出的温度相关响应进行异常检测。本文提供了三个案例研究来评估所提出的方法。第一个是数值桁架桥,其刚度降低了5%。结果证实,在检测异常时,Td-MPCA比MPCA敏感,而MPCA无法检测到模拟的刚度损失。第二个案例研究是在一个实验性桁架桥上,其中介绍并解释了两种破坏方案。检测结果表明,Td-MPCA优于MPCA,因为在预期的时间通过Td-MPCA而非MPCA识别了损坏。第三个案例研究是瑞士的原位弯曲高架桥。施工期和正常使用期的数据均用于解释。结果表明,与仅使用MPCA相比,Td-MPCA能够立即识别出施工过程的变更日期。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号