首页> 外文期刊>Advanced engineering informatics >Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data
【24h】

Exploration and evaluation of AR, MPCA and KL anomaly detection techniques to embankment dam piezometer data

机译:堤坝压力计数据的AR,MPCA和KL异常检测技术的探索与评价

获取原文
获取原文并翻译 | 示例

摘要

In the U.S., the current practice of analyzing the structural integrity of embankment dams relies primarily on manual a posteriori analysis of instrument data by engineers, leaving much room for improvement through the application of advanced data analysis techniques. In this research, different types of anomaly detection techniques are examined in an effort to propose which data analytics are appropriate for various anomaly scenarios as well as piezometer locations. Moreover, both the parametric (Auto Regressive [AR] and Moving Principal Component Analysis [MPCA]) and nonparametric (Kullback-Leibler Divergence [KL]) techniques are applied in order to test if the widely-held assumptions about piezometer data, i.e., linearity between piezometer data and pool levels, as well as normally distributed piezometer data, are necessary in the anomaly detection task. In general, KL performs better than MPCA and AR, and delivers more consistent results throughout the different piezometers and anomaly scenarios. Given that KL is a nonparametric technique, the authors conclude that the prior assumptions about piezometer data do not always provide the best performance for anomaly prediction.
机译:在美国,当前分析堤坝结构完整性的实践主要依靠工程师对仪器数据进行人工后验分析,通过应用先进的数据分析技术,还有很大的改进空间。在这项研究中,研究了不同类型的异常检测技术,以试图提出适用于各种异常情况以及测压仪位置的数据分析。此外,为了测试是否普遍存在关于测压计数据的假设,即采用参数(自动回归[AR]和移动主成分分析[MPCA])和非参数(Kullback-Leibler Divergence [KL])技术。在异常检测任务中,测压计数据和池水位之间的线性以及正态分布的测压计数据是必需的。通常,KL的性能优于MPCA和AR,并在不同的压强计和异常情况下提供更一致的结果。鉴于KL是一种非参数技术,作者得出的结论是,关于测压计数据的先前假设并不总是为异常预测提供最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号