首页> 外文期刊>Engineering Computations >Accelerating unstructured large eddy simulation solver with GPU
【24h】

Accelerating unstructured large eddy simulation solver with GPU

机译:使用GPU加速非结构化大型涡流仿真求解器

获取原文
获取原文并翻译 | 示例

摘要

Purpose Adopting large eddy simulation (LES) to simulate the complex flow in turbomachinery is appropriate to overcome the limitation of current Reynolds-Averaged Navier-Stokes modelling and it provides a deeper understanding of the complicated transitional and turbulent flow mechanism; however, the large computational cost limits its application in high Reynolds number flow. This study aims to develop a three-dimensional GPU-enabled parallel-unstructured solver to speed up the high-fidelity LES simulation.Design/methodology/approach Compared to the central processing units (CPUs), graphics processing units (GPUs) can provide higher computational speed. This work aims to develop a three-dimensional GPU-enabled parallel-unstructured solver to speed up the high-fidelity LES simulation. A set of low-dissipation schemes designed for unstructured mesh is implemented with compute unified device architecture programming model. Several key parameters affecting the performance of the GPU code are discussed and further speed-up can be obtained by analysing the underlying finite volume-based numerical scheme.Findings The results show that an acceleration ratio of approximately 84 (on a single GPU) for double precision algorithm can be achieved with this unstructured GPU code. The transitional flow inside a compressor is simulated and the computational efficiency has been improved greatly. The transition process is discussed and the role of K-H instability playing in the transition mechanism is verified.Practical/implications The speed-up gained from GPU-enabled solver reaches 84 compared to original code running on CPU and the vast speed-up enables the fast-turnaround high-fidelity LES simulation.Originality/value The GPU-enabled flow solver is implemented and optimized according to the feature of finite volume scheme. The solving time is reduced remarkably and the detail structures including vortices are captured.
机译:目的采用大涡模拟(LES)来模拟涡轮机械中的复杂流动,是为了克服当前雷诺平均Navier-Stokes建模的局限性,并且可以更深入地了解复杂的过渡和湍流机制。但是,巨大的计算成本限制了其在高雷诺数流中的应用。本研究旨在开发一种支持GPU的三维并行非结构化求解器,以加快高保真LES仿真的速度。设计/方法/方法与中央处理器(CPU)相比,图形处理器(GPU)可以提供更高的性能计算速度。这项工作旨在开发一种支持GPU的三维并行非结构化求解器,以加快高保真LES仿真的速度。利用计算统一的设备架构编程模型实现了一组针对非结构化网格的低耗散方案。讨论了影响GPU代码性能的几个关键参数,并且可以通过分析基于有限体积的基本数值方案来获得进一步的加速结果。结果表明,两倍的加速比(在单个GPU上)使用这种非结构化的GPU代码可以实现精确算法。模拟了压缩机内部的过渡流,大大提高了计算效率。实用/启示从启用GPU的求解器获得的加速比与在CPU上运行的原始代码相比达到84,并且巨大的加速比使得快速实现了快速转换。 -周转的高保真LES仿真。原始数据/值根据有限体积方案的特征,实现并优化了启用GPU的流量求解器。大大减少了求解时间,并捕获了包括旋涡在内的细节结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号