首页> 外文期刊>Engineering Computations >Modified spline-based differential quadrature method applied to vibration analysis of truncated conical shells
【24h】

Modified spline-based differential quadrature method applied to vibration analysis of truncated conical shells

机译:改进的基于样条的微分求积法应用于圆锥台壳的振动分析

获取原文
获取原文并翻译 | 示例

摘要

Purpose - The purpose of this paper is to present some modifications in the spline-based differential quadrature method (DQM), in order to accelerate the convergence of the method. The improvements are explained and examined by the examples of the free vibration of conical shells. The composite laminated shell, as well as isotropic one, are taken under consideration. Design/methodology/approach - To determine weighting coefficients for the DQM, the spline interpolation with non-standard definitions of the end conditions is used. One of these definitions combines natural and not-a-knot end conditions, while the other one uses the boundary conditions for considered problem as the end conditions. The weighting coefficients can be determined by solving set of equations arising from spline interpolation. Findings - It is shown that the proposed modifications significantly improve the convergence of the method, especially when the boundary conditions are introduced at the stage of the computation of the weighting coefficients. Unfortunately, the use of this approach is limited to some types of boundary conditions. Originality/value - The paper describes development of the modified spline interpolation dedicated to DQM and examines the possibility of building boundary conditions into the weighting coefficients at the stage of the computation of these coefficients.
机译:目的-本文的目的是对基于样条的微分正交方法(DQM)进行一些修改,以加快该方法的收敛速度。通过锥形壳自由振动的示例来解释和检查这些改进。考虑了复合层压壳以及各向同性的壳。设计/方法/方法-为了确定DQM的加权系数,使用了带有非标准定义的最终条件的样条插值。这些定义中的一个结合了自然的和非已知的最终条件,而另一种则将考虑问题的边界条件用作最终条件。可以通过求解由样条插值产生的方程组来确定加权系数。发现-表明所提出的修改显着改善了该方法的收敛性,尤其是当在加权系数的计算阶段引入边界条件时。不幸的是,这种方法的使用仅限于某些类型的边界条件。原创性/价值-本文描述了专用于DQM的改进的样条插值的发展,并研究了在这些系数的计算阶段将边界条件构建到加权系数中的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号