首页> 外文期刊>Engineering Applications of Artificial Intelligence >Modeling of chemical mechanical polishing process using FEM and abductive network
【24h】

Modeling of chemical mechanical polishing process using FEM and abductive network

机译:基于有限元法和诱发网络的化学机械抛光工艺建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper, modeling of a two-dimensional axisymmetric quasic-static finite element model in conjunction with an abductive network for chemical-mechanical polishing process (CMP) was established. Three prediction models can be achieved, i.e., model for von Mises stress at wafer center, model for maximum von Mises stress and model for nonuniformity on wafer surface under various combinations of process parameters. The data of von Mises stress and nonuniformity on wafer surface can be first achieved under different conditions of the carrier load, pad's elastic modulus and thickness by using the developed finite element model for CMP. Next, an abductive network was applied to synthesize the data sets from the FE simulation. It is a self-organizing adaptive modeling tool that establishes the mathematical relationship between input and output variables based on abductive modeling technique and it can automatically synthesize the optimal network structure, including the optimal network structure, the number of layers and the form of functional nodes. Finally, the results from the three developed abductive networks with test data are compared with those from FE simulation to confirm the feasibility of this approach. The findings verified that the results confirm the feasibility and the proposed prediction models for CMP are acceptable.
机译:在本文中,建立了二维轴对称准静态有限元模型,并结合了用于化学机械抛光(CMP)的绑架网络。可以实现三个预测模型,即在各种工艺参数组合下晶片中心的von Mises应力模型,最大von Mises应力模型和晶片表面不均匀性模型。使用开发的CMP有限元模型,可以首先在不同的载流子负载,焊盘的弹性模量和厚度的条件下获得晶圆表面von Mises应力和不均匀性的数据。接下来,使用一个外展网络从有限元仿真中合成数据集。它是一种自组织的自适应建模工具,它基于归纳建模技术在输入和输出变量之间建立数学关系,并且可以自动合成最佳网络结构,包括最佳网络结构,层数和功能节点的形式。最后,将三个开发的带有测试数据的诱变网络的结果与有限元仿真的结果进行比较,以确认该方法的可行性。这些发现证实了结果证实了可行性,并且所建议的CMP预测模型是可以接受的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号