首页> 外文期刊>Engineering Applications of Artificial Intelligence >Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas
【24h】

Color reduction and estimation of the number of dominant colors by using a self-growing and self-organized neural gas

机译:通过使用自增长和自组织的神经气体减少颜色并估计主要颜色的数量

获取原文
获取原文并翻译 | 示例

摘要

A new method for color reduction in a digital image is proposed, which is based on the development of a new neural network classifier and on a new method for Estimation of the Most Important Classes (EMIC). The proposed neural network combines the features of the well-known Growing Neural Gas (GNG) and the Kohonen Self-Organized Feature Map (KSOFM) neural networks. We call the new neural network Self-Growing and Self-Organized Neural Gas (SGONG). This combination produces a new neural network with outstanding features. The proposed technique utilizes the GNG mechanism of growing the neural lattice and the KSOFM leaning adaptation mechanism. Besides, introducing a number of criteria that have an effect on inserting or removing neurons, it is able to automatically define the number of the created neurons and their topology. Moreover, applying the EMIC method, the produced classes can be filtered and the most important classes can be found. The combination of SGONG and EMIC results in retaining the isolated and significant colors with the minimum number of color classes. The above techniques are able to be fed by both color and spatial features. For this reason a similarity function is used for vector comparison. The method is applicable to any type of color images and it can accommodate any type of color space.
机译:提出了一种新的数字图像色彩还原方法,该方法基于一种新的神经网络分类器的开发以及一种用于估计最重要类别(EMIC)的新方法。拟议的神经网络结合了著名的神经生长气体(GNG)和Kohonen自组织特征图(KSOFM)神经网络的特征。我们将新的神经网络称为自生长和自组织神经气体(SGONG)。这种结合产生了具有杰出功能的新神经网络。所提出的技术利用了生长神经晶格的GNG机制和KSOFM倾斜适应机制。此外,通过引入许多对插入或删除神经元有影响的标准,它能够自动定义创建的神经元的数量及其拓扑。此外,使用EMIC方法,可以过滤产生的类,并找到最重要的类。 SGONG和EMIC的组合导致保留的隔离色和有效色数最少的颜色类别。可以通过颜色和空间特征来提供上述技术。因此,相似性函数用于矢量比较。该方法适用于任何类型的彩色图像,并且可以容纳任何类型的彩色空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号