首页> 外文期刊>Engineering Applications of Artificial Intelligence >Soft computing approach for modeling power plant with a once-through boiler
【24h】

Soft computing approach for modeling power plant with a once-through boiler

机译:使用直流锅炉对电厂建模的软计算方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a soft computing approach is presented for modeling electrical power generating plants in order to characterize the essential dynamic behavior of the plant subsystems. The structure of the soft computing method consists of fuzzy logic, neural networks and genetic algorithms. The measured data from a complete set of field experiments is the basis for training the models including the extraction of linguistic rules and membership functions as well as adjusting the other parameters of the fuzzy model. The genetic algorithm is applied to the modeling approach in order to optimize the procedure of the training. Comparison between the responses of the proposed models with the responses of the plants validates the accuracy and performance of the modeling approach. A similar comparison between the responses of these models with the models obtained based on the thermodynamical and physical relations of the plant shows the effectiveness and feasibility of the developed model in terms of more accurate and less deviation between the responses of the models and the corresponding subsystems.
机译:在本文中,提出了一种用于对发电厂进行建模的软计算方法,以表征发电厂子系统的基本动态行为。软计算方法的结构由模糊逻辑,神经网络和遗传算法组成。来自一整套现场实验的测量数据是训练模型的基础,其中包括语言规则和隶属度函数的提取以及调整模糊模型的其他参数。遗传算法被应用于建模方法,以优化训练过程。所提出的模型的响应与工厂的响应之间的比较验证了建模方法的准确性和性能。这些模型的响应与基于工厂的热力学和物理关系获得的模型之间的相似比较表明,在模型的响应与相应子系统之间的更准确和更小的偏差方面,所开发模型的有效性和可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号