首页> 外文期刊>Engineering Applications of Artificial Intelligence >Classification of modulation signals using statistical signal characterization and artificial neural networks
【24h】

Classification of modulation signals using statistical signal characterization and artificial neural networks

机译:使用统计信号表征和人工神经网络对调制信号进行分类

获取原文
获取原文并翻译 | 示例

摘要

Modulation recognition systems have to be able to correctly classify the incoming signal modulation scheme in the presence of noise. A new method for classification of analogue and digital modulated signals at low signal-to-noise ratio (SNR) is introduced in this paper. This method uses the statistical signal characterization (SSC) to extract parameters to classify the different modulation signals. The SSC technique produces a set of four numerical parameters for a specific modulated signal. Subsequent comparison of these parameters to those of other waveforms provides the basis for our classification system. The results of SSC technique are applied to an artificial neural network (ANN) to have a robust classification system in the presence of noise down to SNR of 3 dB. No a priori information is required by this technique about the set of input waveforms. The input to the classification system can be analogue or digital signals or a combination of both. The proposed technique shows a 100% efficiency of classification of analogue signals or digital signals at SNR of 7dB. This classification efficiency reduces to 83% and 86% for analogue or digital signals at SNR of 3dB. The SSC technique shows better classification results in comparison with other techniques with an important advantage over other methods, which is the simplicity of the neural network needed with this technique due to the small number of features used in the classification.
机译:调制识别系统必须能够在存在噪声的情况下正确分类输入信号调制方案。本文介绍了一种用于低信噪比(SNR)的模拟和数字调制信号分类的新方法。此方法使用统计信号表征(SSC)提取参数以对不同的调制信号进行分类。 SSC技术为特定的调制信号产生一组四个数值参数。这些参数与其他波形的后续比较为我们的分类系统提供了基础。 SSC技术的结果被应用于人工神经网络(ANN),以在存在低至3 dB SNR的噪声的情况下具有鲁棒的分类系统。此技术不需要有关输入波形集的先验信息。分类系统的输入可以是模拟或数字信号,也可以是两者的组合。所提出的技术显示出在SNR为7dB时对模拟信号或数字信号进行分类的效率为100%。对于SNR为3dB的模拟或数字信号,此分类效率分别降低到83%和86%。与其他技术相比,SSC技术显示出更好的分类结果,具有优于其他方法的重要优势,这是该技术所需的神经网络的简单性,因为分类中使用的特征数量很少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号