首页> 外文期刊>Engineering Applications of Artificial Intelligence >The use of neural network to predict the behavior of small plastic pipes embedded in reinforced sand and surface settlement under repeated load
【24h】

The use of neural network to predict the behavior of small plastic pipes embedded in reinforced sand and surface settlement under repeated load

机译:利用神经网络预测埋在加筋砂中的小塑料管在反复荷载下的行为

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a feed forward back-propagation neural network model to estimate the vertical deformation of high-density polyethylene (HDPE) small diameter flexible pipes buried in reinforced trenches and settlement of soil surface (SSS) subjected to repeated loadings to simulate the heavy vehicle loads. The experimental data show that the vertical diametral strain (VDS) of pipe embedded in reinforced sand and SSS are dependent on relative density of the sand, number of reinforced layers and height of embedment depth of pipe. Therefore in this investigation, the value of VDS and SSS are related to the above parameters. In the developed neural network, the neurons of the input layer represent the relative density of the sand, number of reinforced layers and height of embedment depth of pipe. One neuron is used in the output layer to represent the value of VDS or SSS. In the entire test, the intensity of applied repeated loads is constant (5.5 kg/cm~2, equal to maximum traffic load).rnA database of 72 experiments from laboratory tests were utilized to train, validate and test the developed neural network. The results show that predictions of VDS and SSS using the trained neural network are in good agreement with experimental results. A comparative evaluation of artificial neural network (ANN) and regression model show that the predictions obtained from the neural network are better than regression model compared to those obtained with the experimental results.
机译:本文提出了一种前馈反向传播神经网络模型,以估算埋在加固沟槽中的高密度聚乙烯(HDPE)小直径挠性管的垂直变形以及承受反复载荷的土壤表面沉降(SSS),以模拟重型车辆负载。实验数据表明,埋在加筋砂和SSS中的管子的垂直径向应变(VDS)取决于砂子的相对密度,加筋层数和管子埋深的高度。因此,在此调查中,VDS和SSS的值与上述参数有关。在发达的神经网络中,输入层的神经元表示沙子的相对密度,增强层的数量和管道的嵌入深度的高度。在输出层中使用一个神经元来表示VDS或SSS的值。在整个测试中,重复施加的强度是恒定的(5.5 kg / cm〜2,等于最大交通负载)。rn来自实验室测试的72个实验数据库被用来训练,验证和测试开发的神经网络。结果表明,使用训练后的神经网络对VDS和SSS的预测与实验结果非常吻合。人工神经网络(ANN)和回归模型的比较评估表明,与实验结果相比,从神经网络获得的预测要好于回归模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号