首页> 外文期刊>Engineering Applications of Artificial Intelligence >Robust neuro-identification of nonlinear plants in electric power systems with missing sensor measurements
【24h】

Robust neuro-identification of nonlinear plants in electric power systems with missing sensor measurements

机译:缺少传感器测量值的电力系统中非线性植物的鲁棒神经识别

获取原文
获取原文并翻译 | 示例

摘要

Fault tolerant measurements are an essential requirement for system identification, control and protection. Measurements can be corrupted or interrupted due to sensor failure, broken or bad connections, bad communication, or malfunction of some hardware or software. This paper proposes a novel robust artificial neural network identifier (RANNI) by combining a sensor evaluation and (missing sensor) restoration scheme (SERS) and an ANN identifier (ANNI) in a cascading structure. This RANNI is able to provide continuous on-line identification of nonlinear plants when some crucial sensor measurements are unavailable. A static synchronous series compensator (SSSC) connected to a power system is used as a test system to examine the validity of the proposed model. Simulation studies are carried out with single and multiple phase current sensors missing; results show that the proposed RANNI continuously tracks the plant dynamics with good precision during the steady state, the small disturbance, the transient state after a large disturbance and the unbalanced three-phase operations. The proposed RANNI is readily applicable to other plant models in power systems.
机译:容错测量是系统识别,控制和保护的基本要求。由于传感器故障,断开或不良的连接,不良的通信或某些硬件或软件的故障,测量可能会被破坏或中断。通过在级联结构中结合传感器评估和(传感器丢失)恢复方案(SERS)和人工神经网络标识符(ANNI),提出了一种新型的鲁棒人工神经网络标识符(RANNI)。当某些关键的传感器测量不可用时,该RANNI能够提供对非线性植物的连续在线识别。连接到电力系统的静态同步串联补偿器(SSSC)用作测试系统,以检验所提出模型的有效性。在缺少单相和多相电流传感器的情况下进行了仿真研究。结果表明,所提出的RANNI能够在稳态,小扰动,大扰动后的暂态和三相不平衡运行过程中,以良好的精度连续跟踪设备动态。拟议的RANNI很容易适用于电力系统中的其他工厂模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号