首页> 外文期刊>Engineering Applications of Artificial Intelligence >Subjective measurement of cosmetic defects using a Computational Intelligence approach
【24h】

Subjective measurement of cosmetic defects using a Computational Intelligence approach

机译:使用计算智能方法对化妆品缺陷进行主观测量

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a Computational Intelligence scheme to deal with subjective human inspection tasks in the industry that are subjective measurements. The scheme is used to solve two cosmetic subjective measurements tasks, classification of cosmetic defects and detection of non-uniform color regions in a translucent film. The first problem is solved with two approaches supervised and unsupervised Artificial Neural Networks. Both techniques yield the same performance, 92.35% of correct classification. Considering that a human inspector has a performance between 85% and 90%, the performance achieved is acceptable. The second problem is faced with a hybrid system based on fuzzy clustering and a Self-Organizing Map. The hybrid approach involves management of uncertainty through fuzzy theory and unsupervised training supported by the SOM. The proposed system is able to find non-uniform color regions with better resolution than a human inspector. The system also showed to be more sensitive than a simple fuzzy clustering approach.
机译:本文提出了一种计算智能方案,用于处理行业中的主观人类检查任务,即主观测量。该方案用于解决两个化妆品主观测量任务,化妆品缺陷分类和检测半透明膜中不均匀颜色区域的问题。第一个问题是通过有监督的和无监督的人工神经网络两种方法解决的。两种技术产生相同的性能,占正确分类的92.35%。考虑到人类检查员的绩效介于85%和90%之间,因此所达到的绩效是可以接受的。第二个问题是基于模糊聚类和自组织映射的混合系统。混合方法涉及通过模糊理论和SOM支持的无监督训练来管理不确定性。所提出的系统能够找到比人类检查员更好的分辨率的非均匀颜色区域。该系统还显示出比简单的模糊聚类方法更为敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号