首页> 外文期刊>Engineering Applications of Artificial Intelligence >Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method
【24h】

Automatic ship berthing using artificial neural network trained by consistent teaching data using nonlinear programming method

机译:非线性编程方法,用一致的教学数据训练的人工神经网络自动泊船

获取原文
获取原文并翻译 | 示例

摘要

Ship handling during berthing is considered as one of the most sophisticated tasks that a ship master has to face. The presence of current and wind make it even more complicated to execute, especially when ship approaches to a pier in low speed. To deal with such phenomenon, only experienced human brain decides the necessary action taken depending on situation demand. So automation in berthing is still far beyond imagination. But, if the human brain can be replicated by any suitable artificial intelligence technique to perform the same action that human brain does during berthing, then automatic ship berthing is possible. In this research artificial neural network is used for that purpose. To enhance its learnability, consistent teaching data based on the virtual window concept are created to ensure optimal steering with the help of nonlinear programming language (NPL) method. Then instead of centralized controller, two separate feed forward neural networks are trained using Lavenberg-Marquardt algorithm in backpropagation technique for command rudder angle and propeller revolution output respectively. The trained ANNs are then verified for their workability in no wind condition. On the other hand, separate ANNs are trained with reconstructed teaching data considering gust wind disturbances. To deal with any abrupt condition, ANN followed by PD controller is also introduced in case of command rudder angle output whose effectiveness is well verified not only for teaching data but also in case of non-teaching data and different gust wind distributions.
机译:停泊期间的船舶处理被认为是船长必须面对的最复杂的任务之一。水流和风的存在使执行起来更加复杂,尤其是当船舶低速驶入码头时。为了应对这种现象,只有经验丰富的人脑才能根据情况需求决定采取的必要措施。因此,泊位自动化仍然远远超出了想象。但是,如果可以通过任何合适的人工智能技术复制人脑以执行与人脑在停泊期间相同的动作,则可以进行自动船泊。在这项研究中,为此目的使用了人工神经网络。为了提高其易学性,在非线性编程语言(NPL)方法的帮助下,创建了基于虚拟窗口概念的一致的教学数据,以确保最佳的操纵。然后,使用Lavenberg-Marquardt算法在反向传播技术中训练两个独立的前馈神经网络,以分别用于指令舵角和螺旋桨转速输出。然后,对训练有素的人工神经网络在无风条件下的可操作性进行验证。另一方面,考虑到阵风干扰,使用重构的教学数据训练单独的人工神经网络。为了应对任何突然的情况,在指令舵角输出的情况下,还引入了ANN和PD控制器,其不仅针对教学数据而且在非教学数据和不同阵风分布的情况下都得到了很好的验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号