首页> 外文OA文献 >Consistently Trained Artificial Neural Network for Automatic Ship Berthing Control
【2h】

Consistently Trained Artificial Neural Network for Automatic Ship Berthing Control

机译:用于自动船舶停泊控制的一贯培训的人工神经网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, consistently trained Artificial Neural Network controller for automatic ship berthing is discussed. Minimum time course changing manoeuvre is utilised to ensure such consistency and a new concept named ‘virtual window’ is introduced. Such consistent teaching data are then used to train two separate multi-layered feed forward neural networks for command rudder and propeller revolution output. After proper training, several known and unknown conditions are tested to judge the effectiveness of the proposed controller using Monte Carlo simulations. After getting acceptable percentages of success, the trained networks are implemented for the free running experiment system to judge the network’s real time response for Esso Osaka 3-m model ship. The network’s behaviour during such experiments is also investigated for possible effect of initial conditions as well as wind disturbances. Moreover, since the final goal point of the proposed controller is set at some distance from the actual pier to ensure safety, therefore a study on automatic tug assistance is also discussed for the final alignment of the ship with actual pier.
机译:在本文中,讨论了始终如一的自动船舶脱机的人工神经网络控制器。使用最小时间课程更改机动以确保介绍了此类一致性,并引入了名为“虚拟窗口”的新概念。然后使用这种一致的教学数据来训练用于命令舵和螺旋桨旋转输出的两个单独的多层馈送前向神经网络。在适当的训练之后,测试了几种已知的和未知的条件,以判断所提出的控制器的有效性使用Monte Carlo模拟。获得可接受的成功百分比后,培训的网络是为自由运行实验系统实施的,以判断网络对埃索大阪3-M型船舶的实时响应。在此类实验期间的网络的行为也被调查,以实现初始条件以及风扰动的影响。此外,由于所提出的控制器的最终目标点位于距实际码码的一定距离,以确保安全,因此还讨论了船舶与实际码头的最终对准的自动拖船辅助的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号