首页> 外文期刊>Engineering Applications of Artificial Intelligence >Learning semantic concepts from image database with hybrid generative/discriminative approach
【24h】

Learning semantic concepts from image database with hybrid generative/discriminative approach

机译:使用混合生成/判别方法从图像数据库中学习语义概念

获取原文
获取原文并翻译 | 示例

摘要

Semantic gap has become a bottleneck of content-based image retrieval in recent years. In order to bridge the gap and improve the retrieval performance, automatic image annotation has emerged as a crucial problem. In this paper, a hybrid approach is proposed to learn the semantic concepts of images automatically. Firstly, we present continuous probabilistic latent semantic analysis (PLSA) and derive its corresponding Expectation-Maximization (EM) algorithm. Continuous PLSA assumes that elements are sampled from a multivariate Gaussian distribution given a latent aspect, instead of a multinomial one in traditional PLSA. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Therefore, the framework can learn the correlations between features as well as the correlations between words. Since the hybrid approach combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct the experiments on three baseline datasets and the results show that our approach outperforms many state-of-the-art approaches.
机译:近年来,语义鸿沟已成为基于内容的图像检索的瓶颈。为了弥合差距并提高检索性能,自动图像标注已成为一个关键问题。本文提出了一种混合方法来自动学习图像的语义概念。首先,我们提出了连续概率潜在语义分析(PLSA)并推导了其相应的期望最大化(EM)算法。连续PLSA假定元素是从具有潜在特征的多元高斯分布中采样的,而不是传统PLSA中的多项式元素。此外,我们提出了一种混合框架,该框架在生成学习阶段中采用连续PLSA来建模图像的视觉特征,并在识别学习阶段中使用分类器链的集合对多标签数据进行分类。因此,该框架可以学习特征之间的相关性以及单词之间的相关性。由于混合方法结合了生成式学习和判别式学习的优点,因此它可以精确地预测看不见图像的语义标注。最后,我们对三个基准数据集进行了实验,结果表明我们的方法优于许多最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号