首页> 外文期刊>Engineering Applications of Artificial Intelligence >Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering
【24h】

Expectation propagation learning of a Dirichlet process mixture of Beta-Liouville distributions for proportional data clustering

机译:Beta-Liouville分布的Dirichlet过程混合的期望传播学习,用于比例数据聚类

获取原文
获取原文并翻译 | 示例

摘要

We propose a nonparametric Bayesian model for the clustering of proportional data. Our model is based on an infinite mixture of Beta-Liouville distributions and allows a compact description of complex data. The choice of the Beta-Liouville as the basis of our model is justified by the fact that it has been shown to be a good alternative to the Dirichlet and generalized Dirichlet distributions for the statistical representation of proportional data. Using this infinite mixture, we show how a careful modeling can achieve good results by allowing the elicitation of prior belief about the parameters and the number of clusters through suitable learning. Indeed, we develop an efficient learning algorithm, based on expectation propagation, to estimate the parameters of our infinite Beta-Liouville mixture model. The feasibility and effectiveness of the proposed method are demonstrated by two challenging applications namely action and facial expression recognition.
机译:我们为比例数据的聚类提出了非参数贝叶斯模型。我们的模型基于Beta-Liouville分布的无限混合,并允许对复杂数据进行紧凑描述。选择Beta-Liouville作为我们模型的基础是合理的,因为事实证明它可以很好地替代比例数据的统计表示的Dirichlet和广义Dirichlet分布。使用这种无限的混合,我们展示了如何通过允许通过适当的学习来激发对参数和聚类数目的先验信念,精心建模可以取得良好的结果。确实,我们基于期望传播开发了一种有效的学习算法,以估算无限Beta-Liouville混合模型的参数。该方法的可行性和有效性通过动作和面部表情识别这两个具有挑战性的应用得到了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号