首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions Via Variational Inference
【24h】

Online Learning of a Dirichlet Process Mixture of Beta-Liouville Distributions Via Variational Inference

机译:通过变分推断在线学习Beta-Liouville分布的Dirichlet过程混合物

获取原文
获取原文并翻译 | 示例

摘要

A large class of problems can be formulated in terms of the clustering process. Mixture models are an increasingly important tool in statistical pattern recognition and for analyzing and clustering complex data. Two challenging aspects that should be addressed when considering mixture models are how to choose between a set of plausible models and how to estimate the model's parameters. In this paper, we address both problems simultaneously within a unified online nonparametric Bayesian framework that we develop to learn a Dirichlet process mixture of Beta-Liouville distributions (i.e., an infinite Beta-Liouville mixture model). The proposed infinite model is used for the online modeling and clustering of proportional data for which the Beta-Liouville mixture has been shown to be effective. We propose a principled approach for approximating the intractable model's posterior distribution by a tractable one—which we develop—such that all the involved mixture's parameters can be estimated simultaneously and effectively in a closed form. This is done through variational inference that enjoys important advantages, such as handling of unobserved attributes and preventing under or overfitting; we explain that in detail. The effectiveness of the proposed work is evaluated on three challenging real applications, namely facial expression recognition, behavior modeling and recognition, and dynamic textures clustering.
机译:可以根据聚类过程提出很多问题。混合物模型是统计模式识别以及用于分析和聚类复杂数据的日益重要的工具。在考虑混合模型时应解决的两个挑战性方面是如何在一组合理的模型之间进行选择以及如何估计模型的参数。在本文中,我们在一个统一的在线非参数贝叶斯框架中同时解决了这两个问题,我们开发了该框架来学习Beta-Liouville分布的Dirichlet过程混合(即无限Beta-Liouville混合模型)。拟议的无限模型用于比例数据的在线建模和聚类,对于这些数据,Beta-Liouville混合物已被证明是有效的。我们提出了一种有原则的方法,即通过我们开发的难处理模型来近似难处理模型的后验分布,以便可以以封闭形式同时有效地估计所有涉及的混合物的参数。这是通过具有重要优势的变分推理来完成的,例如处理未观察到的属性以及防止拟合不足或过度拟合;我们会详细解释。拟议工作的有效性是在三个具有挑战性的实际应用中进行评估的,即面部表情识别,行为建模和识别以及动态纹理聚类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号