首页> 外文期刊>Engineering Applications of Artificial Intelligence >Fault diagnosis network design for vehicle on-board equipments of highspeed railway: A deep learning approach
【24h】

Fault diagnosis network design for vehicle on-board equipments of highspeed railway: A deep learning approach

机译:高速铁路车载设备故障诊断网络设计:一种深度学习方法

获取原文
获取原文并翻译 | 示例

摘要

With the rapid development of high-speed railways (HSRs) throughout the world, the fault diagnosis systems of vehicle on-board equipments (VOBEs) for high speed trains have received increasing attention. Since the faults of VOBEs in HSRs are usually uncertain and complex, the current fault diagnosis methods are mainly based on manual judgement in real-world operations, which is generally inefficient and insecurity with the big rail traffic data. In this paper, we propose an automated diagnosis network of VOBE for high-speed train via a deep learning approach. First, we propose a mathematical model to formulate the fault diagnosis problem in HSRs, involving the definition of fault evidence vectors and reason vectors by analyzing the real-world fault data that are collected in Wuhan-Guangzhou high speed railway. Then, a deep belief network (DBN) and its training procedures are developed on the basis of Restricted Boltzmann Machine (RBM). Finally, the proposed diagnosis network is trained and validated with real-world data. Furthermore, we compare the DBN-based fault diagnosis network with k-nearest neighbor (KNN) and ANN-BP (artificial neural network with back propagations). The results indicate that, the developed DBN outperforms both KNN and ANN-BP, and improves the accuracy of fault diagnosis for VOBEs to 90-95% in HSRs.
机译:随着世界范围内高速铁路(HSR)的飞速发展,用于高速列车的车载设备(VOBE)的故障诊断系统受到越来越多的关注。由于高铁中VOBE的故障通常是不确定的和复杂的,因此当前的故障诊断方法主要是基于现实操作中的人工判断,对于大的铁路交通数据通常效率低下且不安全。在本文中,我们通过深度学习方法提出了一种用于高速列车的VOBE自动诊断网络。首先,我们提出了一个数学模型来描述高铁的故障诊断问题,其中包括通过分析武广高铁所收集的实际故障数据来定义故障证据向量和原因向量。然后,在受限玻尔兹曼机(RBM)的基础上,开发了深度信念网络(DBN)及其训练程序。最后,使用实际数据对提出的诊断网络进行训练和验证。此外,我们将基于DBN的故障诊断网络与k最近邻(KNN)和ANN-BP(具有反向传播的人工神经网络)进行了比较。结果表明,所开发的DBN优于KNN和ANN-BP,并且将HSR中VOBE的故障诊断准确性提高到90-95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号