首页> 外文期刊>Engineering Applications of Artificial Intelligence >Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant
【24h】

Adaptive data-derived anomaly detection in the activated sludge process of a large-scale wastewater treatment plant

机译:大型废水处理厂活性污泥过程中基于数据的自适应异常检测

获取原文
获取原文并翻译 | 示例

摘要

This work examines real-time anomaly detection and isolation in a full-scale wastewater treatment application. The Viikinmaeki plant is the largest municipal wastewater treatment facility in Finland. It is monitored with ample instrumentation, though their potential is not yet fully exploited. One reason that prevents the use of the instrumentation in plant control is the occasional insufficient measurement performance. Therefore, we investigate an intelligent anomaly detection system for the activated sludge process in order to motivate a more efficient use of sensors in the process operation. The anomaly detection methodology is based on principal component analysis. Because the state of the process fluctuates, moving-window extensions are used to adapt the analysis to the time-varying conditions. The results show that both instrument and process anomalies were successfully detected using the proposed algorithm and the variables responsible for the anomalies correctly isolated. We also demonstrate that the proposed algorithm represents a convenient improvement for supporting the efficient operation of wastewater treatment plants.
机译:这项工作研究了在大规模废水处理应用中的实时异常检测和隔离。 Viikinmaeki工厂是芬兰最大的市政废水处理设施。尽管它们的潜力尚未得到充分利用,但仍使用大量仪器对其进行监控。阻止在工厂控制中使用仪器的原因之一是偶尔的测量性能不足。因此,我们研究了用于活性污泥过程的智能异常检测系统,以激发在过程操作中更有效地使用传感器。异常检测方法基于主成分分析。由于过程的状态波动,因此使用移动窗口扩展来使分析适应时变条件。结果表明,使用所提出的算法可以成功检测到仪器和过程异常,并且正确隔离了造成异常的变量。我们还证明了所提出的算法代表了一种方便的改进,可支持废水处理厂的高效运行。

著录项

  • 来源
  • 作者单位

    Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland;

    Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland,Department of Chemical Engineering, Federal University of Campina Grande, 58429-140 Campina Grande, Brazil;

    Department of Information and Computer Science, Aalto University, School of Science, P.O. Box 15400, FI-00076 Aalto, Finland,Department of Teleinformatics Engineering, Federal University of Ceara, 60455-760 Fortaleza, Brazil;

    Department of Information Technology, University of Florence, Via S. Marta 3, 50139 Florence, Italy;

    HSY Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Finland;

    HSY Helsinki Region Environmental Services Authority, P.O. Box 100, FI-00066 HSY, Finland;

    Department of Built Environment, Aalto University, School of Engineering, P.O. Box 15200, FI-00076 Aalto, Finland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Adaptive process monitoring; Anomaly detection; Principal component analysis; Wastewater treatment;

    机译:自适应过程监控;异常检测;主成分分析;废水处理;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号