首页> 外文期刊>Engineering Applications of Artificial Intelligence >Simulation-based multimodal optimization of decoy system design using an archived noise-tolerant genetic algorithm
【24h】

Simulation-based multimodal optimization of decoy system design using an archived noise-tolerant genetic algorithm

机译:基于存档的耐噪遗传算法的基于仿真的诱饵系统设计多模态优化

获取原文
获取原文并翻译 | 示例

摘要

The difficulty of warship decoy system design problem is twofold. First, we need to find not just one but as many optimal solutions as possible. Second, it demands a heavy computation to evaluate a candidate solution through a long series of underwater warfare simulations. The previous approach tried to reduce the amount of search by heuristically selecting a set of plausible starting points for the search by a simulated annealing algorithm. However, it shows only limited success and cannot easily scale up to larger problems. This paper proposes an efficient and easy-to-scale-up multimodal optimization algorithm named A-NTGA that is based on a genetic algorithm. A-NTGA quickly evaluates candidate solutions by conducting only a small number of simulations, but instead copes with these inaccurate or noisy fitness values by using a noisy optimization technique. To further enhance the efficiency of search by promoting the population diversity, A-NTGA is provided with an archive to which some good-looking solutions are migrated in order to prevent the population from being too crowded with similar solutions. Usually at the end of the search, many optimal solutions are retrieved from the archive as well as the population. The experimental results show that our method can find multiple optimal solutions more efficiently compared to other methods and can be easily scaled up to larger problems.
机译:军舰诱饵系统设计的难点是双重的。首先,我们不仅需要找到一个最优解决方案,而且还要找到尽可能多的最优解决方案。其次,需要进行大量的计算才能通过一系列水下作战模拟评估候选解决方案。先前的方法试图通过模拟退火算法试探性地选择一组合理的起点进行搜索,以减少搜索量。但是,它仅显示出有限的成功,并且不能轻易扩展到更大的问题。本文提出了一种基于遗传算法的高效且易于扩展的多模式优化算法,称为A-NTGA。 A-NTGA仅通过执行少量模拟即可快速评估候选解决方案,但可以通过使用噪声优化技术来应对这些不准确或有噪声的适应度值。为了通过促进人口多样性进一步提高搜索效率,A-NTGA提供了一个档案库,一些好看的解决方案已迁移到该档案库中,以防止人口对类似的解决方案过于拥挤。通常在搜索结束时,会从档案库以及总体中检索出许多最优解。实验结果表明,与其他方法相比,我们的方法可以更有效地找到多个最优解,并且可以轻松地扩展到更大的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号