首页> 外文期刊>Engineering Applications of Artificial Intelligence >A hybrid harmony search algorithm with efficient job sequence scheme and variable neighborhood search for the permutation flow shop scheduling problems
【24h】

A hybrid harmony search algorithm with efficient job sequence scheme and variable neighborhood search for the permutation flow shop scheduling problems

机译:具有有效作业序列方案和可变邻域搜索的混合式和谐搜索算法,用于置换流水车间调度问题

获取原文
获取原文并翻译 | 示例

摘要

The permutation flow shop scheduling problem (PFSSP), one of the most widely studied production scheduling problems, is a typical NP-hard combinatorial optimization problem. In this paper, a hybrid harmony search algorithm with efficient job sequence mapping scheme and variable neighborhood search (VNS), named HHS, is proposed to solve the PFFSP with the objective to minimize the makespan. First of all, to extend the HHS algorithm to solve the PFSSP effectively, an efficient smallest order value (SOV) rule based on random key is introduced to convert continuous harmony vector into a discrete job permutation after fully investigating the effect of different job sequence mapping schemes. Secondly, an effective initialization scheme, which is based on NEH heuristic mechanism combining with chaotic sequence, is employed with the aim of improving the solution's quality of the initial harmony memory (HM). Thirdly, an opposition-based learning technique in the selection process and the best harmony (best individual) in the pitch adjustment process are made full use of to accelerate convergence performances and improve solution accuracy. Meanwhile, the parameter sensitivity is studied to investigate the properties of HHS, and the recommended values of parameters adopted in HHS are presented. Finally, by making use of a novel variable neighborhood search, the efficient insert and swap structures are incorporated into the HHS to adequately emphasize local exploitation ability. Experimental simulations and comparisons on both continuous and combinatorial benchmark problems demonstrate that the HHS algorithm outperforms the standard HS algorithm and other recently proposed efficient algorithms in terms of solution quality and stability.
机译:排列流水车间调度问题(PFSSP)是研究最广泛的生产调度问题之一,它是典型的NP-hard组合优化问题。本文提出了一种高效的工作序列映射方案和可变邻域搜索(VNS)的混合和声搜索算法,称为HHS,以解决PFFSP的问题,目的是最大程度地减少工期。首先,为了扩展HHS算法以有效求解PFSSP,在充分研究了不同作业序列映射的影响之后,引入了基于随机密钥的有效最小订单值(SOV)规则,将连续和声矢量转换为离散作业排列。计划。其次,基于NEH启发式机制与混沌序列相结合的有效初始化方案,旨在提高初始和声记忆(HM)解的质量。第三,充分利用选择过程中基于对立的学习技术和音调调整过程中的最佳和声(最佳个人),以加快收敛性能并提高求解精度。同时,对参数敏感性进行了研究,以研究HHS的特性,并提出了HHS采用的推荐参数值。最后,通过使用新颖的可变邻域搜索,将有效的插入和交换结构合并到HHS中,以充分强调本地开发能力。在连续和组合基准问题上的实验仿真和比较表明,在解决方案质量和稳定性方面,HHS算法优于标准HS算法和其他最近提出的高效算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号