首页> 外文期刊>Engineering Applications of Artificial Intelligence >A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling
【24h】

A class of Monotone Fuzzy rule-based Wiener systems with an application to Li-ion battery modelling

机译:一类基于单调模糊规则的维纳系统及其在锂离子电池建模中的应用

获取原文
获取原文并翻译 | 示例

摘要

A class of Fuzzy rule-based Monotone Wiener Models (FMWMs) is introduced. These are transformation models comprising a linear dynamical block and a memoryless nonlinearity. The smoothest dynamical block that has an output which is comonotonic with the training data is sought. The dependence between the output of the linear block and the output of the system is described via a set of fuzzy rules. This paper considers systems with a sensitive dependence on the initial conditions and also with a moderate amount of uncertainty in the initial state. A new learning algorithm is proposed that makes use of recent statistical tests for assessing the comonotonicity of imprecisely perceived sequences of data. The main aim of the proposed models is to estimate different health parameters of rechargeable batteries for automotive use. For this practical application, FMWMs are shown to improve a selection of models with a varying degree of embedded domain knowledge, ranging from first-principles models to universal approximators.
机译:介绍了一类基于模糊规则的单调维纳模型(FMWMs)。这些是包含线性动态块和无记忆非线性的转换模型。寻找具有与训练数据同调的输出的最平滑的动力块。线性块的输出与系统的输出之间的相关性通过一组模糊规则来描述。本文考虑的系统具有对初始条件的敏感依赖性,并且在初始状态下具有适度的不确定性。提出了一种新的学习算法,该算法利用最近的统计测试来评估不精确感知的数据序列的同调性。提出的模型的主要目的是估计汽车用可充电电池的不同健康参数。对于此实际应用,显示了FMWM可以改进具有不同程度的嵌入式领域知识的模型的选择,范围从第一原理模型到通用逼近器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号