首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data
【24h】

A Compact Evolutionary Interval-Valued Fuzzy Rule-Based Classification System for the Modeling and Prediction of Real-World Financial Applications With Imbalanced Data

机译:紧凑的演化区间值模糊规则分类系统,用于不平衡数据真实世界金融应用的建模和预测

获取原文
获取原文并翻译 | 示例

摘要

The current financial crisis has stressed the need to obtain more accurate prediction models in order to decrease risk when investing money on economic opportunities. In addition, the transparency of the process followed to make the decisions in financial applications is becoming an important issue. Furthermore, there is a need to handle real-world imbalanced financial datasets without using sampling techniques that might introduce noise in the used data. In this paper, we present a compact evolutionary interval-valued fuzzy rule-based classification system, which is based on interval-valued fuzzy rule-based classification system with tuning and rule selection (IVTURS) for the modeling and prediction of real-world financial applications. This proposed system allows obtaining good prediction accuracies using a small set of short fuzzy rules implying a high degree of interpretability of the generated linguistic model. Furthermore, the proposed system deals with the financial imbalanced datasets with no need for any preprocessing or sampling method and, thus, avoiding the accidental introduction of noise in the data used in the learning process. The system is also provided with a mechanism to handle examples that are not covered by any fuzzy rule in the generated rule base. To test the quality of our proposal, we will present an experimental study including 11 real-world financial datasets. We will show that the proposed system outperforms the original C4.5 decision tree, type-1, and interval-valued fuzzy counterparts that use the synthetic minority oversampling technique (SMOTE) to preprocess data and the original FURIA, which is a fuzzy approximative classifier. Furthermore, the proposed method enhances the results achieved by the cost-sensitive C4.5, and it gives competitive results when compared with FURIA using SMOTE, while our proposal avoids preprocessing techniques, and it provides- interpretable models that allow obtaining more accurate results.
机译:当前的金融危机已强调需要获得更准确的预测模型,以便在将钱投资于经济机会时降低风险。另外,在财务申请中做出决定所遵循的过程的透明度正在成为一个重要问题。此外,需要处理现实世界中不平衡的金融数据集,而无需使用可能在使用的数据中引入噪声的采样技术。在本文中,我们提出了一个紧凑的,基于演化的基于区间值模糊规则的分类系统,该系统基于带有调整和规则选择(IVTURS)的基于区间值模糊规则的分类系统,用于真实世界金融的建模和预测应用程序。该提出的系统允许使用一小组短的模糊规则来获得良好的预测精度,这意味着所生成的语言模型具有高度的可解释性。此外,所提出的系统无需任何预处理或采样方法即可处理财务不平衡的数据集,从而避免了在学习过程中使用的数据中意外引入噪声。该系统还提供了一种机制来处理生成的规则库中任何模糊规则未涵盖的示例。为了测试我们提案的质量,我们将提供一项包含11个现实世界金融数据集的实验研究。我们将显示,所提出的系统优于原始的C4.5决策树,类型1和区间值模糊对应物,后者使用合成少数过采样技术(SMOTE)预处理数据和原始FURIA,后者是模糊近似分类器。 。此外,提出的方法增强了对成本敏感的C4.5所获得的结果,与使用SMOTE的FURIA相比,它提供了竞争性的结果,而我们的提议避免了预处理技术,并且提供了可解释的模型,可以使结果更准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号